Publications by authors named "Daniela Torres-DIaz"

CO is a major component of the icy mantles surrounding dust grains in planet and star formation regions. Understanding its photodesorption is crucial for explaining gas phase abundances in the coldest environments of the interstellar medium irradiated by vacuum-UV (VUV) photons. Photodesorption yields determined experimentally from CO samples grown at low temperatures ( = 15 K) have been found to be very sensitive to experimental methods and conditions.

View Article and Find Full Text PDF

Motivated by the current introduction of extreme ultraviolet lithography (EUVL) into chip manufacturing processes, and thus the transition to electron-induced chemistry within the respective resist materials, we have studied low energy electron-induced fragmentation of 2-(trifluoromethyl)acrylic acid (TFMAA). This compound is chosen as a potential resist component, whereby fluorination enhances the EUV adsorption and may at the same time promote electron-induced dissociation. Dissociative ionization and dissociative electron attachment are studied, and to aid the interpretation of the observed fragmentation channels, the respective threshold values are calculated at the DFT and coupled cluster level of theory.

View Article and Find Full Text PDF

X-Ray irradiation of interstellar ice analogues has recently been proven to induce desorption of molecules, thus being a potential source for the still-unexplained presence of gaseous organics in the coldest regions of the interstellar medium, especially in protoplanetary disks. The proposed desorption mechanism involves the Auger decay of excited molecules following soft X-ray absorption, known as X-ray induced electron-stimulated desorption (XESD). Aiming to quantify electron induced desorption in XESD, we irradiated pure methanol (CH OH) ices at 23 K with 505 eV electrons, to simulate the Auger electrons originating from the O 1s core absorption.

View Article and Find Full Text PDF