Most angiosperm plants recognise the 22-residue flagellin (flg22) epitope in bacterial flagellin via homologs of cell surface receptor FLS2 (flagellin sensitive-2) and mount pattern-triggered immune responses. However, flg22 is buried within the flagellin protein indicating that proteases might be required for flg22 release. Here, we demonstrate the extracellular subtilase SBT5.
View Article and Find Full Text PDFIn both plants and animals, nucleotide-binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen recognition and activation of innate immunity. In plants, NLRs recognise pathogen-derived effector proteins and initiate effector-triggered immunity (ETI). However, the molecular mechanisms that link NLR-mediated effector recognition and downstream signalling are not fully understood.
View Article and Find Full Text PDFThe extracellular space of plant tissues contains hundreds of hydrolases that might harm colonising microbes. Successful pathogens may suppress these hydrolases to enable disease. Here, we report the dynamics of extracellular hydrolases in Nicotiana benthamiana upon infection with Pseudomonas syringae.
View Article and Find Full Text PDFAs in metazoans, life in oxygenic photosynthetic organisms relies on the accurate regulation of cell death. During development and in response to the environment, photosynthetic cells activate and execute cell death pathways that culminate in the death of a specific group of cells, a process known as regulated cell death (RCD). RCD control is instrumental, as its misregulation can lead to growth penalties and even the death of the entire organism.
View Article and Find Full Text PDFMultiple biotic and abiotic stresses challenge plants growing in agricultural fields. Most molecular studies have aimed to understand plant responses to challenges under controlled conditions. However, studies on field-grown plants are scarce, limiting application of the findings in agricultural conditions.
View Article and Find Full Text PDFCyanobacteria are globally widespread photosynthetic prokaryotes and are major contributors to global biogeochemical cycles. One of the most critical processes determining cyanobacterial eco-physiology is cellular death. Evidence supports the existence of controlled cellular demise in cyanobacteria, and various forms of cell death have been described as a response to biotic and abiotic stresses.
View Article and Find Full Text PDFThe phytotoxin botrydial triggers PA production in tomato cell suspensions via PLD and PLC/DGK activation. PLC/DGK-derived PA is partially required for botrydial-induced ROS generation. Phosphatidic acid (PA) is a phospholipid second messenger involved in the induction of plant defense responses.
View Article and Find Full Text PDFContents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III.
View Article and Find Full Text PDFCaspases are key regulators of apoptosis in animals. This correlation has driven plant researchers for decades to look for caspases regulating programmed cell death (PCD) in plants. These studies revealed caspase-like activities, caspase-related proteases, and cysteine (Cys) proteases regulating PCD in plants, but identified no caspases and no conserved, apoptosis-like death pathway.
View Article and Find Full Text PDFThe recent finding that decoy engineering can expand the recognition specificity of a plant immune receptor opens a wealth of opportunities for resistance breeding. In this Spotlight we discuss which factors should be considered to successfully translate decoy engineering into crop species.
View Article and Find Full Text PDFPlant nucleotide-binding, leucine-rich repeat (NB-LRR) proteins confer immunity to pathogens possessing the corresponding avirulence proteins. Activation of NB-LRR proteins is often associated with induction of the hypersensitive response (HR), a form of programmed cell death. NRC1 (NB-LRR Required for HR-Associated Cell Death-1) is a tomato (Solanum lycopersicum) NB-LRR protein that participates in the signalling cascade leading to resistance to the pathogens Cladosporium fulvum and Verticillium dahliae.
View Article and Find Full Text PDFHydrolases such as subtilases, vacuolar processing enzymes (VPEs) and the proteasome play important roles during plant programmed cell death (PCD). We investigated hydrolase activities during PCD using activity-based protein profiling (ABPP), which displays the active proteome using probes that react covalently with the active site of proteins. We employed tomato (Solanum lycopersicum) seedlings undergoing synchronized hypersensitive cell death by co-expressing the avirulence protein Avr4 from Cladosporium fulvum and the tomato resistance protein Cf-4.
View Article and Find Full Text PDF*In animals and plants, extracellular ATP exerts its effects by regulating the second messengers Ca(2+), nitric oxide (NO) and reactive oxygen species (ROS). In animals, phospholipid-derived molecules, such as diacylglycerol, phosphatidic acid (PA) and inositol phosphates, have been associated with the extracellular ATP signaling pathway. The involvement of phospholipids in extracellular ATP signaling in plants, as it is established in animals, is unknown.
View Article and Find Full Text PDF