Publications by authors named "Daniela Stange"

In recent years much effort has been made to increase the Sn content in GeSn alloys in order to increase direct bandgap charge carrier recombination and, therefore, to reach room temperature lasing. While being successful for the former, the increase of Sn content is detrimental, leading to increased defect concentrations and a lower thermal budget regarding processing. In this work we demonstrate strong photoluminescence enhancement in low Sn content GeSn layers by implementing tensile strain.

View Article and Find Full Text PDF

Since the first demonstration of lasing in direct bandgap GeSn semiconductors, the research efforts for the realization of electrically pumped group IV lasers monolithically integrated on Si have significantly intensified. This led to epitaxial studies of GeSn/SiGeSn hetero- and nanostructures, where charge carrier confinement strongly improves the radiative emission properties. Based on recent experimental literature data, in this report we discuss the advantages of GeSn/SiGeSn multi quantum well and quantum dot structures, aiming to propose a roadmap for group IV epitaxy.

View Article and Find Full Text PDF

Growth and characterization of advanced group IV semiconductor materials with CMOS-compatible applications are demonstrated, both in photonics. The investigated GeSn/SiGeSn heterostructures combine direct bandgap GeSn active layers with indirect gap ternary SiGeSn claddings, a design proven its worth already decades ago in the III-V material system. Different types of double heterostructures and multi-quantum wells (MQWs) are epitaxially grown with varying well thicknesses and barriers.

View Article and Find Full Text PDF

SiGeSn ternaries are grown on Ge-buffered Si wafers incorporating Si or Sn contents of up to 15 at%. The ternaries exhibit layer thicknesses up to 600 nm, while maintaining a high crystalline quality. Tuning of stoichiometry and strain, as shown by means of absorption measurements, allows bandgap engineering in the short-wave infrared range of up to about 2.

View Article and Find Full Text PDF

Imposex in female gastropods is a widely documented masculinisation phenomenon in response to tributyltin (TBT) exposure. Although it is generally accepted that imposex is a case of endocrine disruption the underlying mechanisms are controversially discussed with aromatase inhibition and retinoid X receptor (RXR) signalling pathways as two conflicting hypotheses. Hence, we performed injection experiments with the marine dogwhelk Nucella lapillus.

View Article and Find Full Text PDF

Molluscs are raising attention as ecotoxicological test organisms due to their high diversity and ecological importance. The ovoviviparous prosobranch gastropod Potamopyrgus antipodarum (freshwater mudsnail) responds very sensitively to xenobiotics and has therefore been proposed as OECD standard test organism. Endocrine disrupting chemicals influence the reproduction of P.

View Article and Find Full Text PDF

An OECD initiative for the development of mollusc-based toxicity tests for endocrine disrupters and other chemicals has recommended three test species with respective test designs for further standardisation. Preparing a subsequent pre-validation study we performed a reproduction test with Potamopyrgus antipodarum, determining the concentration range of the selected test substances, bisphenol A (BPA) and cadmium (Cd). At 16 °C, the recommended test temperature, the number of embryos in the brood pouch was increased by BPA and decreased by Cd (NOEC: 20 μg BPA/L and 1 μg Cd/L).

View Article and Find Full Text PDF