Publications by authors named "Daniela Seelenfreund"

Starch residue analysis was carried out on stone tools recovered from the bottom layer of the Anakena site on Rapa Nui (Easter Island). These deposits have been dated to AD 1000-1300 AD and so far, represent the earliest evidence of human settlement on this island. Twenty obsidian tools were analyzed.

View Article and Find Full Text PDF

Glucokinase (GCK) is the pancreatic β-cell glucose sensor, and its kinetics are key to that purpose. A slow transition step, displayed as non-hyperbolic kinetics, and a low affinity for glucose characterize GCK. Mutations in GCK associated with maturity-onset diabetes of the young type 2 (MODY2) previously described reduce the functionality of the human pancreatic β-cell, leading to diabetic clinical phenotypes.

View Article and Find Full Text PDF

is a white-rot fungus with a high specificity towards lignin mineralization when colonizing dead wood or lignocellulosic compounds. Its lignocellulose degrading system is formed by cellulose hydrolytic enzymes, manganese peroxidases, and laccases that catalyze the efficient depolymerization and mineralization of lignocellulose. To determine if this metabolic specialization has modified codon usage of the lignocellulolytic system, improving its adaptation to the fungal translational machine, we analyzed the adaptation to host codon usage (CAI), tRNA pool (tAI, and AAtAI), codon pair bias (CPB), and the number of effective codons (Nc).

View Article and Find Full Text PDF

Humans introduced paper mulberry (Broussonetia papyrifera) from Taiwan into the Pacific over 5000 years ago as a fiber source to make barkcloth textiles that were, and still are, important cultural artifacts throughout the Pacific. We have used B. papyrifera, a species closely associated to humans, as a proxy to understand the human settlement of the Pacific Islands.

View Article and Find Full Text PDF

Premise Of The Study: (Moraceae) is native to Asia and is used as a medicinal plant and as a source of fiber for making paper. It was dispersed into the Pacific region as a fiber source for making nonwoven textiles (barkcloth). Microsatellites were developed to trace the human-mediated dispersal of this species into the Pacific region.

View Article and Find Full Text PDF

Background: Paper mulberry (Broussonetia papyrifera (L.) L'Hér. ex Vent) is a dioecious tree native to East Asia and mainland Southeast-Asia, introduced prehistorically to Polynesia as a source of bark fiber by Austronesian-speaking voyagers.

View Article and Find Full Text PDF

The peopling of Remote Oceanic islands by Austronesian speakers is a fascinating and yet contentious part of human prehistory. Linguistic, archaeological, and genetic studies have shown the complex nature of the process in which different components that helped to shape Lapita culture in Near Oceania each have their own unique history. Important evidence points to Taiwan as an Austronesian ancestral homeland with a more distant origin in South China, whereas alternative models favor South China to North Vietnam or a Southeast Asian origin.

View Article and Find Full Text PDF

Background: Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles.

View Article and Find Full Text PDF

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C.

View Article and Find Full Text PDF

We present the analysis of an intronic polymorphism of the nephrin gene and its relationship to the development of diabetic nephropathy in a study of diabetes type 1 and type 2 patients. The frequency of the single nucleotide polymorphism rs#466452 in the nephrin gene was determined in 231 patients and control subjects. The C/T status of the polymorphism was assessed using restriction enzyme digestions and the nephrin transcript from a kidney biopsy was examined.

View Article and Find Full Text PDF

In this work, we explore the use of the unbiased cDNA-AFLP strategy to identify genes involved in Mn(2+) homeostasis in Ceriporiopsis subvermispora. In this ligninolytic white-rot fungus, whose genome has not yet been sequenced, three Mn peroxidase genes responding to Mn(2+) have been characterized. Using cDNA-AFLP to identify transcript-derived fragments (TDFs), a total of 37 differentially expressed cDNA fragments were identified by comparing band intensities among cDNA-AFLP patterns obtained from mycelia from cultures supplemented with different concentrations of Mn(2+).

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is one of the major complications of type 2 diabetes and is associated with coronary disease. Nephrin, a protein mainly expressed in glomeruli, is decreased in DN and other kidney diseases. Since insulin levels are misregulated in type 2 diabetes, a possible connection between DN and its decreased nephrin expression could be the presence of regulatory elements responsive to insulin in the nephrin gene (NPHS1) promoter region.

View Article and Find Full Text PDF