Publications by authors named "Daniela Schmitter"

Background: Circulating microRNAs (miRNAs) emerge as potential heart failure biomarkers. We aimed to identify associations between acute heart failure (AHF)-specific circulating miRNAs and well-known heart failure biomarkers.

Methods: Associations between 16 biomarkers predictive for 180day mortality and the levels of 12 AHF-specific miRNAs were determined in 100 hospitalized AHF patients, at baseline and 48hours.

View Article and Find Full Text PDF

Background: Deregulation of microRNAs (miRNAs) may be involved in the pathogenesis of heart failure (HF) and renal disease. Our aim is to describe miRNA levels related to early worsening renal function in acute HF patients.

Method And Results: We studied the association between 12 circulating miRNAs and Worsening Renal Function (WRF; defined as an increase in the serum creatinine level of 0.

View Article and Find Full Text PDF

Aims: Our aim was to identify circulating microRNAs (miRNAs) associated with acute heart failure (AHF).

Methods And Results: Plasma miRNA profiling included 137 patients with AHF from 3 different cohorts, 20 with chronic heart failure (CHF), 8 with acute exacerbation of COPD, and 41 healthy controls. Levels of circulating miRNAs were measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Biomarkers play an important role in heart failure. They provide us information about the mechanisms involved in specific types of heart failure and can identify patients at higher risk. Although the majority of biomarker studies in heart failure focus on their prognostic value, the clinical applicability of prognostication in heart failure needs to be established.

View Article and Find Full Text PDF

RNA interference and the microRNA (miRNA) pathway can induce sequence-specific mRNA degradation and/or translational repression. The human genome encodes hundreds of miRNAs that can post-transcriptionally repress thousands of genes. Using reporter constructs, we observed that degradation of mRNAs bearing sites imperfectly complementary to the endogenous let-7 miRNA is considerably stronger in human HEK293 than HeLa cells.

View Article and Find Full Text PDF