The super-SILAC approach enables the quantitative proteome profiling of highly complex samples such as biological tissues or whole organisms. In this approach, a super-SILAC mix consisting of heavy isotope-labeled cells representative of the tissue or organism to be analyzed is mixed with the unlabeled samples of interest, such that the labeled proteins act as a spike-in standard, thus allowing the relative quantification of proteins between the samples of interest. In this chapter, we thoroughly describe the protocol to carry out the super-SILAC approach using a common in vivo model such as zebrafish larvae.
View Article and Find Full Text PDFRhodium nanoparticles have recently been described as promising photosensitizers due to their low toxicity in the absence of near-infrared irradiation, but their high cytotoxicity when irradiated. Irradiation is usually carried out with a laser source, which allows the treatment to be localized in a specific area, thus avoiding undesirable side effects on healthy tissues. In this study, a multi-omics approach based on the combination of microarray-based transcriptomics and mass spectrometry-based untargeted and targeted metabolomics has provided a global picture of the molecular mechanisms underlying the anti-tumoral effect of rhodium nanoparticle-based photodynamic therapy.
View Article and Find Full Text PDFThe importance of evaluating how natural organic matter influences the mobility of arsenic species in an ecosystem is an environmental concern. This work aimed to evaluate the interaction between humic substances (HS) and four arsenic species of high toxicity [As(III), As(V), MMA(V), and DMA(V)] (HS-As) under the influence of HS concentration and pH. Next, the complexing capacity (CC) of HS by As(III) was determined in function of pH, ionic strength and co-existing ions.
View Article and Find Full Text PDFThe intake of toxic compounds through the diet as a result of migration processes from food packaging is of increasing concern. It has been shown that the surfactant commercially known as surfynol, which is commonly used in food-contact materials, is capable of migrating from multilayer containers into the food, reaching potentially harmful concentration levels. In the present study, the integration of an untargeted and a targeted metabolomics approach has been carried out using NTERA-2 germinal cells as in-vitro model, to make further progress in elucidating the molecular mechanisms associated with the toxicity of surfynol.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a promising alternative treatment for different types of cancer due to its high selectivity, which prevents healthy tissues from being damaged. The use of nanomaterials in PDT has several advantages over classical photosensitizing agents, due to their unique properties and their capacity for functionalization. Especially interesting is the use of metallic nanoparticles, which are capable of absorbing electromagnetic radiation and either transferring this energy to oxygen molecules for the generation of reactive oxygen species (ROS) or dissipating it as heat.
View Article and Find Full Text PDFMercury is a well-known risk to ecosystems and human health. Considering that no effective treatment is available to counteract mercury toxicity, the effectiveness of different trace elements, agents and nutrients with antioxidant properties to protect or reverse mercury toxicity is crucial. In this article we present the main analytical and bioanalytical strategies that have been used to study the potential of selenium as a protective agent against mercury-induced toxicity.
View Article and Find Full Text PDF