Publications by authors named "Daniela Riccardi"

Background: Cachexia is a wasting syndrome associated with systemic inflammation and metabolic disruption. Detection of the early signs of the disease may contribute to the effective attenuation of associated symptoms. Despite playing a central role in the control of metabolism and inflammation, the liver has received little attention in cachexia.

View Article and Find Full Text PDF

Background: Impaired mineral ion metabolism is a hallmark of CKD-metabolic bone disorder. It can lead to pathologic vascular calcification and is associated with an increased risk of cardiovascular mortality. Loss of calcium-sensing receptor (CaSR) expression in vascular smooth muscle cells exacerbates vascular calcification Conversely, vascular calcification can be reduced by calcimimetics, which function as allosteric activators of CaSR.

View Article and Find Full Text PDF

In this review article we present the evidence to date supporting the role of the calcium-sensing receptor (CaSR) as a key, pluripotential molecular trigger for asthma and speculate on the likely benefits of topical therapy of asthma with negative allosteric modulators of the CaSR: calcilytics.

View Article and Find Full Text PDF

Pharmacological allosteric agonists (calcimimetics) of the extracellular calcium-sensing receptor (CaSR) have substantial gastro-intestinal side effects and induce the expression of inflammatory markers in colon cancer cells. Here, we compared the effects of both CaSR-specific ( enantiomers) and -unspecific ( enantiomers) enantiomers of a calcimimetic (NPS 568) and a calcilytic (allosteric CaSR antagonists; NPS 2143) to prove that these effects are indeed mediated via the CaSR, rather than via off-target effects, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Asthma remains an incurable disease, and new therapies are needed, particularly for patients who do not respond well to existing treatments.
  • Researchers explored the potential of four calcium-sensing receptor (CaSR) negative allosteric modulators (NAMs), originally designed for osteoporosis, for topical treatment of asthma.
  • The study found that these inhaled CaSR NAMs effectively reduced airway hyperresponsiveness and inflammation without significant side effects, showing promise as a safe and effective new option for asthma management.
View Article and Find Full Text PDF

The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, -glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca ) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation.

View Article and Find Full Text PDF

Cancer cachexia affects about 80% of advanced cancer patients, it is linked to poor prognosis and to date, there is no efficient treatment or cure. The syndrome leads to progressive involuntary loss of muscle and fat mass induced by systemic inflammatory processes. The role of the white adipose tissue (WAT) in the onset and manifestation of cancer cachexia gained importance during the last decade.

View Article and Find Full Text PDF

Autosomal dominant hypocalcemia type 1 (ADH1) is a rare form of hypoparathyroidism caused by heterozygous, gain-of-function mutations of the calcium-sensing receptor gene (CAR). Individuals are hypocalcemic with inappropriately low parathyroid hormone (PTH) secretion and relative hypercalciuria. Calcilytics are negative allosteric modulators of the extracellular calcium receptor (CaR) and therefore may have therapeutic benefits in ADH1.

View Article and Find Full Text PDF

Hypercalciuria can result from activation of the basolateral calcium-sensing receptor (CaSR), which in the thick ascending limb of Henle's loop controls Ca excretion and NaCl reabsorption in response to extracellular Ca However, the function of CaSR in the regulation of NaCl reabsorption in the distal convoluted tubule (DCT) is unknown. We hypothesized that CaSR in this location is involved in activating the thiazide-sensitive NaCl cotransporter (NCC) to prevent NaCl loss. We used a combination of and models to examine the effects of CaSR on NCC activity.

View Article and Find Full Text PDF

Background: Cancer cachexia is a multifactorial syndrome that dramatically decreases survival. Loss of white adipose tissue (WAT) is one of the key characteristics of cachexia. WAT wasting is paralleled by microarchitectural remodeling in cachectic cancer patients.

View Article and Find Full Text PDF

Recent increasing evidence supports a role for neuronal type signaling in bone. Specifically glutamate receptors have been found in cells responsible for bone remodeling, namely the osteoblasts and the osteoclasts. While most studies have focused on ionotropic glutamate receptors, the relevance of the metabotropic glutamate signaling in bone is poorly understood.

View Article and Find Full Text PDF

Neurons differentiated from pluripotent stem cells using established neural culture conditions often exhibit functional deficits. Recently, we have developed enhanced media which both synchronize the neurogenesis of pluripotent stem cell-derived neural progenitors and accelerate their functional maturation; together these media are termed SynaptoJuice. This pair of media are pro-synaptogenic and generate authentic, mature synaptic networks of connected forebrain neurons from a variety of induced pluripotent and embryonic stem cell lines.

View Article and Find Full Text PDF

Background: Cachexia is a systemic syndrome leading to body wasting, systemic inflammation, and to metabolic chaos. It is a progressive condition, and little is known about its dynamics. Detection of the early signs of the disease may lead to the attenuation of the associated symptoms.

View Article and Find Full Text PDF

The ability to monitor changes in the ionic composition of the extracellular environment is a crucial feature that has evolved in all living organisms. The cloning and characterization of the extracellular calcium-sensing receptor (CaSR) from the mammalian parathyroid gland in the early 1990s provided the first description of a cellular, ion-sensing mechanism. This finding demonstrated how cells can detect small, physiological variations in free ionized calcium (Ca(2+)) in the extracellular fluid and subsequently evoke an appropriate biological response by altering the secretion of parathyroid hormone (PTH) that acts on PTH receptors expressed in target tissues, including the kidney, intestine, and bone.

View Article and Find Full Text PDF
Article Synopsis
  • Optimal fetal lung growth relies on anion-driven fluid secretion, which is influenced by the fetus's hypercalcemic condition affecting the calcium-sensing receptor (CaSR).
  • The activation of CaSR promotes lung expansion by stimulating the cystic fibrosis transmembrane conductance regulator (CFTR) and increasing fluid secretion through various chloride channels expressed in the fetal lung.
  • The study indicates that the mechanisms of this fluid secretion are species-specific, with implications for fetal lung development and potential long-term effects on postnatal respiratory health if disrupted.
View Article and Find Full Text PDF

Cachexia affects about 80% of gastrointestinal cancer patients. This multifactorial syndrome resulting in involuntary and continuous weight loss is accompanied by systemic inflammation and immune cell infiltration in various tissues. Understanding the interactions among tumor, immune cells, and peripheral tissues could help attenuating systemic inflammation.

View Article and Find Full Text PDF

Cancer cachexia, of which the most notable symptom is severe and rapid weight loss, is present in the majority of patients with advanced cancer. Inflammatory mediators play an important role in the development of cachexia, envisaged as a chronic inflammatory syndrome. The white adipose tissue (WAT) is one of the first compartments affected in cancer cachexia and suffers a high rate of lipolysis.

View Article and Find Full Text PDF

Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells.

View Article and Find Full Text PDF

Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture system to investigate the effect of loading on osteocyte-osteoblast interactions. MLO-Y4 cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered on top.

View Article and Find Full Text PDF

The extracellular Ca-sensing receptor (CaSR) is a sensor for a number of key nutrients within the body, including Ca ions (Ca²⁺) and L-amino acids. The CaSR is expressed in a number of specialised cells within the gastrointestinal (GI) tract, and much work has been done to examine CaSR's role as a nutrient sensor in this system. This review article examines two emerging roles for the CaSR within the GI tract--as a mediator of kokumi taste modulation in taste cells and as a regulator of dietary hormone release in response to L-amino acids in the intestine.

View Article and Find Full Text PDF

Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium.

View Article and Find Full Text PDF

Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E)11.5-16.

View Article and Find Full Text PDF

The Ca(2+)-sensing receptor (CaSR) is the master regulator of whole-body extracellular free ionized [Ca(2+)]o. In addition to sensing [Ca(2+)]o, CaSR integrates inputs from a variety of different physiological stimuli. The CaSR is also expressed in many regions outside the [Ca(2+)]o homeostatic system, including the fetal lung where it plays a crucial role in lung development.

View Article and Find Full Text PDF