Publications by authors named "Daniela Quezada-Martinez"

In the Brassica genus, we find both diploid species (one genome) and allotetraploid species (two different genomes) but no naturally occurring hexaploid species (three different genomes, AABBCC). Although hexaploids can be produced via human intervention, these neo-polyploids have quite unstable genomes and usually suffer from severe genome reshuffling. Whether these genome rearrangements continue in later generations and whether genomic arrangements follow similar, reproducible patterns between different lineages is still unknown.

View Article and Find Full Text PDF

The production of a new allohexaploid Brassica crop (2n = AABBCC) is increasingly attracting international interest: a new allohexaploid crop could benefit from several major advantages over the existing Brassica diploid and allotetraploid species, combining genetic diversity and traits from all six crop species with additional allelic heterosis from the extra genome. Although early attempts to produce allohexaploids showed mixed results, recent technological and conceptual advances have provided promising leads to follow. However, there are still major challenges which exist before this new crop type can be realized: (1) incorporation of sufficient genetic diversity to form a basis for breeding and improvement of this potential crop species; (2) restoration of regular meiosis, as most allohexaploids are genetically unstable after formation; and (3) improvement of agronomic traits to the level of "elite" breeding material in the diploid and allotetraploid crop species.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change will significantly impact crop production through increased drought, heat stress, pests, diseases, and extreme weather events.
  • The use of wild relatives in breeding may enhance crops' environmental resilience, given their higher tolerance to various stresses, but challenges exist in hybridization and selective breeding.
  • This review focuses on Brassica crops and their wild relatives, detailing traits beneficial for interspecific hybridization and strategies to maximize success in introgression breeding to improve crop resilience.
View Article and Find Full Text PDF

Spring droughts are expected to become more frequent in Central Europe as a result of climate change. Their coincidence with flowering of biennial crops like winter oilseed rape (Brassica napus) can cause major impact for yield development. However, no data is available on the diversity of genetic regulation of drought tolerance during this stage under realistic conditions.

View Article and Find Full Text PDF

Plants in temperate areas evolved vernalisation requirement to avoid pre-winter flowering. In Brassicaceae, a period of extended cold reduces the expression of the flowering inhibitor FLOWERING LOCUS C (FLC) and paves the way for the expression of downstream flowering regulators. As with all polyploid species of the Brassicaceae, the model allotetraploid Brassica napus (rapeseed, canola) is highly duplicated and carries 9 annotated copies of Bna.

View Article and Find Full Text PDF

Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species.

View Article and Find Full Text PDF