: A biocomposite based on magnesium-doped hydroxyapatite and enriched with amoxicillin (MgHApOx) was synthesized using the coprecipitation method and is presented here for the first time. : The stability of MgHAp and MgHApOx suspensions was evaluated by ultrasound measurements. The structure of the synthesized MgHAp and MgHApOx was examined with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFIn this paper, we present for the first time the development of zinc-doped hydroxyapatite enriched with tetracycline (ZnHApTe) powders and provide a comprehensive evaluation of their physico-chemical and biological properties. Various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used for the sample's complex evaluation. Moreover, the biocompatibility of zinc-doped hydroxyapatite (ZnHAp) and ZnHApTe nanoparticles was evaluated with the aid of human fetal osteoblastic cells (hFOB 1.
View Article and Find Full Text PDFThe hydroxyapatite and copper-doped hydroxyapatite coatings (CaCu(PO)(OH); x = 0, 0.03; HAp and 3CuHAp) were obtained by the vacuum deposition technique. Then, both coatings were analyzed by the X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and water contact angle techniques.
View Article and Find Full Text PDFCu-doped hydroxyapatite (CuHAp) thin films were obtained using spin coating method. To make these thin films, CuHAp suspensions obtained by sol-gel method were used. The coatings obtained were thermally treated at 500 °C.
View Article and Find Full Text PDFInfections related to orthopedic/stomatology surgery are widely recognized as a significant health concern. Therefore, the development of new materials with superior biological properties and good stability could represent a valuable alternative to the classical treatments. In this paper, the fluorine-substituted hydroxyapatite (FHAp) suspension, with the chemical formula Ca(PO)(OH)F (where x = 0.
View Article and Find Full Text PDFIn this study, we report on the development of hydroxyapatite (HAp) and samarium-doped hydroxyapatite (SmHAp) nanoparticles using a cost-effective method and their biological effects on a bone-derived cell line MC3T3-E1. The physicochemical and biological features of HAp and SmHAp nanoparticles are explored. The X-ray diffraction (XRD) studies revealed that no additional peaks were observed after the integration of samarium (Sm) ions into the HAp structure.
View Article and Find Full Text PDFIn the present study, sage-coated zinc-doped hydroxyapatite was incorporated into a dextran matrix (7ZnHAp-SD), and its physico-chemical and antimicrobial activities were investigated. A 7ZnHAp-SD nanocomposite suspension was obtained using the co-precipitation method. The stability of the nanocomposite suspension was evaluated using ultrasound measurements.
View Article and Find Full Text PDFThe new magnesium-doped hydroxyapatite in dextran matrix (10MgHApD) nanocomposites were synthesized using coprecipitation technique. A spherical morphology was observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) characterization results show hydroxyapatite hexagonal phase formation.
View Article and Find Full Text PDFA magnesium-doped hydroxyapatite in chitosan matrix (MgHApC) sample was developed as a potential platform for numerous applications in the pharmaceutical, medical, and food industries. Magnesium-doped hydroxyapatite suspensions in the chitosan matrix were obtained by the coprecipitation technique. The surface shape and morphological features were determined by scanning electron microscopy (SEM).
View Article and Find Full Text PDFIn the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, containing human osteosarcoma MG63 cells anchored. Studies regarding the biocompatibility of the composite layers were performed with the aid of a MTT (3-4,5-Dimethylthiazol 2,5-diphenyltetrazolium bromide) assay. The data determined that the composite layers did not inhibit the growth and adhesion of MG63 cells to their surfaces exhibiting good biocompatibility properties.
View Article and Find Full Text PDFHydroxyapatite doped with magnesium and zinc in chitosan matrix biocomposites have great potential for applications in space technology, aerospace, as well as in the biomedical field, as a result of coatings with multifunctional properties that meet the increased requirements for wide applications. In this study, coatings on titanium substrates were developed using hydroxyapatite doped with magnesium and zinc ions in a chitosan matrix (MgZnHAp_Ch). Valuable information concerning the surface morphology and chemical composition of MgZnHAp_Ch composite layers were obtained from studies that performed scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), metallographic microscopy, and atomic force microscopy (AFM).
View Article and Find Full Text PDFThis study aims to design and test different formulations composed of dextran-coated iron oxide nanoparticles (IONPs) loaded with 5-Fluorouracil (5-FU) with varying nanoparticle:drug ratios on colorectal cancer cells. The stable suspension of IONPs s was synthesized by the adapted co-precipitation method. The stable suspension of IONPs was mixed with a solution of dextran and 5-FU solubilized in a saline solution.
View Article and Find Full Text PDFThis study aimed to investigate the biological response induced by hydroxyapatite (HAp) and zinc-doped HAp (ZnHAp) in human gingival fibroblasts and to explore their antimicrobial activity. The ZnHAp (with xZn = 0.00 and 0.
View Article and Find Full Text PDFDue to the emergence of antibiotic-resistant pathogens, the need to find new, efficient antimicrobial agents is rapidly increasing. Therefore, in this study, we report the development of new biocomposites based on zinc-doped hydroxyapatite/chitosan enriched with essential oil of L. with good antimicrobial activity.
View Article and Find Full Text PDFPresently, iron oxide nanoparticles are the only ones approved for clinical use as contrast agents in magnetic resonance imaging (MRI). Even though there is a high demand for these types of nanoparticles both for clinical use as well as for research, there are difficulties in obtaining stable nanoparticles with reproducible properties. In this context, in this study, we report the obtaining by an adapted coprecipitation method of dextran-coated maghemite nanoparticles (ɤ-FeO NPs).
View Article and Find Full Text PDFIron oxide nanoparticles are one of the most promising tools for theranostic applications of pancreatic cancer due to their unique physicochemical and magnetic properties making them suitable for both diagnosis and therapy. Thus, our study aimed to characterize the properties of dextran-coated iron oxide nanoparticles (DIO-NPs) of maghemite (γ-FeO) type synthesized by co-precipitation and to investigate their effects (low-dose versus high-dose) on pancreatic cancer cells focusing on NP cellular uptake, MR contrast, and toxicological profile. This paper also addressed the modulation of heat shock proteins (HSPs) and p53 protein expression as well as the potential of DIO-NPs for theranostic purposes.
View Article and Find Full Text PDFThe iron oxide nanoparticles coated with different surface coatings were studied and characterized by multiple physicochemical and biological methods. The present paper aims at estimating the toxicity in vitro and in vivo of dextran coated iron oxide aqueous magnetic fluids. The in vitro studies were conducted by quantifying the viability of HeLa cells after their incubation with the samples (concentrations of 62.
View Article and Find Full Text PDFThe objective of this study consisted of the development of new materials with antimicrobial properties at the nanometric scale that could lead to an increase in therapeutic efficacy and reduction of toxic side effects. This work focuses on obtaining and characterizing stable suspensions with narrow size distribution with antimicrobial properties. The stability of the suspensions obtained by an adapted co-precipitation method was evaluated by ultrasonic measurements.
View Article and Find Full Text PDFDrinking water contamination has become a worldwide problem due to the highly negative effects that pollutants can have on human organisms and the environment. Hydroxyapatite (HAp) has the appropriate properties for the immobilization of various pollutants, being considered amongst the most cost-effective materials for water decontamination. The main objective of this study was to use synthesized hydroxyapatite for the elimination of Sr ions from contaminated solutions.
View Article and Find Full Text PDFIn the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, (CaMg(PO)(OH); x = 0, 0.08 and 0.3; HApCh, 8MgHApCh and 30MgHApCh).
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO-NPs) are increasingly used in consumer products for their particular properties. Even though TiO is considered chemically stable and insoluble, studying their behavior in biological environments is of great importance to figure their potential dissolution and transformation. The interaction between TiO-NPs with different sizes and crystallographic forms (anatase and rutile) and the strong chelating enterobactin () siderophore was investigated to look at a possible dissolution.
View Article and Find Full Text PDFThis is the first report regarding the effect of gamma irradiation on chitosan-coated magnesium-doped hydroxyapatite (x = 0.1; 10 MgHApCh) layers prepared by the spin-coating process. The stability of the resulting 10 MgHApCh gel suspension used to obtain the layers has been shown by ultrasound measurements.
View Article and Find Full Text PDFDextran coated cerium doped hydroxyapatite (CaCex(PO)(OH)), with x = 0.05 (5CeHAp-D) and x = 0.1 (10CeHAp-D) were deposited on Si substrates by radio frequency magnetron sputtering technique for the first time.
View Article and Find Full Text PDFIron-oxide-doped polyaniline (PANI-IO) thin films were obtained by the polymerization of aniline monomers and iron oxide solutions in direct current glow discharge plasma in the absence of a buffer gas for the first time. The PANI-IO thin films were deposited on optical polished Si wafers in order to study surface morphology and evaluate their in vitro biocompatibility. The characterization of the coatings was accomplished using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), metallographic microscopy (MM), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDF