Lipo-oligomers have been proven as potent siRNA carriers based on stable electrostatic and hydrophobic complex formation and endosomal membrane destabilization. Although high stability of siRNA polyplexes is desirable in the extracellular space and cellular uptake, intracellular disassembly is important for the cytosolic release of siRNA and RNA-induced silencing complex formation. To improve the release, bioreducible sequence-defined lipo-oligomers were synthesized by solid-phase assisted synthesis using the disulfide building block Fmoc-succinoyl-cystamine for precise positioning of a disulfide unit between a lipophilic diacyl (bis-myristyl, bis-stearyl or bis-cholestanyl) domain and an ionizable oligocationic siRNA binding unit.
View Article and Find Full Text PDFInfections with the Gram-negative bacterium Pseudomonas aeruginosa result in a high mortality among immunocompromised patients and those with cystic fibrosis. The pathogen can switch from planktonic life to biofilms, and thereby shields itself against antibiotic treatment and host immune defense to establish chronic infections. The bacterial protein LecA, a C-type lectin, is a virulence factor and an integral component for biofilm formation.
View Article and Find Full Text PDFThe investigation of coiled coil formation for one mono- and two divalent peptide-polymer conjugates is presented. Through the assembly of the full conjugates on solid support, monodisperse sequence-defined conjugates are obtained with defined positions and distances between the peptide side chains along the polymeric backbone. A heteromeric peptide design was chosen, where peptide K is attached to the polymer backbone, and coiled-coil formation is only expected through complexation with the complementary peptide E.
View Article and Find Full Text PDFPolymer-block-peptide conjugates are tailored to render hydrophobic small molecule drugs water soluble. The combinatorial strategy selects for bioconjugates that exhibit sequence-specific solubilization and switchable release profiles of the cargo through incorporation of a disulfide linker moiety into the peptide-library design. While the study focused on the photosensitizer m-THPC and reductive carrier cleavage, the approach is generic and might be expanded toward a broad range of poorly soluble small-molecule drugs and other selective cleavage mechanisms to disassemble a peptide binding domain of the bioconjugate-based solubilizer.
View Article and Find Full Text PDFThe synthesis of photoswitchable glycooligomers is presented by applying solid-phase polymer synthesis and functional building blocks. The obtained glycoligands are monodisperse and present azobenzene moieties as well as sugar ligands at defined positions within the oligomeric backbone and side chains, respectively. We show that the combination of molecular precision together with the photoswitchable properties of the azobenzene unit allows for the photosensitive control of glycoligand binding to protein receptors.
View Article and Find Full Text PDFSynthetic glycooligomers have emerged as valuable analogues for multivalent glycan structures in nature. These multivalent carbohydrates bind to specific receptors and play a key role in biological processes. In this work, we investigate the specific interaction between mannose ligand presenting soft colloidal probes (SCPs) attached to an atomic force microscope (AFM) cantilever and a Concanavalin A (ConA) receptor surface in the presence of competing glycooligomer ligands.
View Article and Find Full Text PDFMultivalency as a key principle in nature has been successfully adopted for the design and synthesis of artificial glycoligands by attaching multiple copies of monosaccharides to a synthetic scaffold. Besides their potential in various applied areas, e.g.
View Article and Find Full Text PDFElastic sensors: A simple method is presented for the measurement of specific biomolecular interactions with soft colloidal hydrogel particles (SCPs) as sensors. Carbohydrate/lectin interactions (see picture; green: carbohydrate molecules) were studied by optical detection of the mechanical deformation of the particles on a lectin surface. The affinity of various carbohydrate inhibitors could also be readily determined.
View Article and Find Full Text PDFWe present for the first time the synthesis of sequence-defined monodisperse glycopolymer segments via solid-phase polymer synthesis. Functional building blocks displaying alkyne moieties and hydrophilic ethylenedioxy units were assembled stepwise on solid phase. The resulting polymer segments were conjugated with mannose sugars via 1,3-dipolar cycloaddition.
View Article and Find Full Text PDFNa[AuCl(4)]·2H(2)O reacts with tridentate thiosemicarbazide ligands, H(2)L1, derived from N-[N',N'-dialkylamino(thiocarbonyl)]benzimidoyl chloride and thiosemicarbazides under formation of air-stable, green [AuCl(L1)] complexes. The organic ligands coordinate in a planar SNS coordination mode. Small amounts of gold(I) complexes of the composition [AuCl(L3)] are formed as side-products, where L3 is an S-bonded 5-diethylamino-3-phenyl-1-thiocarbamoyl-1,2,4-triazole.
View Article and Find Full Text PDF