Diabetic nephropathy (DN) and hypertension are prime causes for end-stage renal disease (ESRD) that often coexist in patients, but are seldom studied in combination. Kidney adenosine levels are markedly increased in diabetes, and the expression and function of renal adenosine receptors are altered in experimental diabetes. The aim of this work is to explore the impact of endogenous and exogenous adenosine on the expression/distribution profile of its receptors along the nephron of hypertensive rats with experimentally-induced diabetes.
View Article and Find Full Text PDFKey Points: Reducing Na intake reduces the partial pressure of oxygen in the renal cortex and activates the renin-angiotensin-aldosterone system. In the absence of high blood pressure, these consequences of dietary Na reduction may be detrimental for the kidney. In a normotensive animal experimental model, reducing Na intake for 2 weeks increased renal oxygen consumption, which was normalized by mineralocorticoid receptor blockade.
View Article and Find Full Text PDFGrowing evidence supports a central role of NADPH oxidases (NOXs) in the regulation of platelets, which are circulating cells involved in both hemostasis and thrombosis. Here, the use of Nox1 and Nox1 mice as experimental models of human responses demonstrated a critical role of NOX1 in collagen-dependent platelet activation and pathological arterial thrombosis, as tested in vivo by carotid occlusion assays. In contrast, NOX1 does not affect platelet responses to thrombin and normal hemostasis, as assayed in tail bleeding experiments.
View Article and Find Full Text PDFStudies on diabetic nephropathy rarely take into account that the co-existence of diabetes and hypertension is frequent and further aggravates the prognosis of renal dysfunction. Adenosine can activate four subtypes of adenosine receptors (A1, A2A, A2B and A3) and has been implicated in diabetic nephropathy. However, it is not known if, in hypertensive conditions, diabetes alters the presence/distribution profile of renal adenosine receptors.
View Article and Find Full Text PDFActivation of the renin-angiotensin system may initiate chronic kidney disease. We hypothesised that renal hypoxia is a consequence of hemodynamic changes induced by angiotensin II and occurs prior to development of severe renal damage. Male Sprague-Dawley rats were infused continuously with angiotensin II (350 ng/kg/min) for 8 days.
View Article and Find Full Text PDFOxygen sensing mechanisms are vital for homeostasis and survival. When oxygen levels are too low (hypoxia), blood flow has to be increased, metabolism reduced, or a combination of both, to counteract tissue damage. These adjustments are regulated by local, humoral, or neural reflex mechanisms.
View Article and Find Full Text PDFEarly stage diabetic nephropathy is characterized by glomerular hyperfiltration and reduced renal tissue Po2. Recent observations have indicated that increased tubular Na(+)-glucose linked transport (SGLT) plays a role in the development of diabetes-induced hyperfiltration. The aim of the present study was to determine how inhibition of SLGT impacts upon Po2 in the diabetic rat kidney.
View Article and Find Full Text PDFAims: Activation of renal renin-angiotensin system (RAS) and reactive oxygen species (ROS) are the main pathophysiological mechanisms associated with kidney injury both in diabetes and hypertension. However, the contribution to medullary damage when the two pathologies coexist has seldom been explored.
Main Methods: Diabetes was induced with streptozotocin in twelve week-old male Wistar and spontaneously hypertensive rats (SHR) rats; controls received vehicle.
Background: Diabetes and hypertension independently contribute to renal injury, and the major mechanisms involved are increased reactive oxygen species (ROS) bioavailability and renin-angiotensin system (RAS) activation. We investigated the role of adenosine in controlling ROS production and RAS activation associated with renal dysfunction in hypertension and diabetes.
Methods: Fourteen days after induction of diabetes with streptozotocin in 12-week-old male Wistar and spontaneously hypertensive (SHR) rats, animals were treated during 7 days with 2-chloroadenosine (CADO group, 5 mg/kg/d), a stable analogue of adenosine, or underwent a sham operation procedure.
Increased angiotensin II (ANG II) or adenosine can potentiate each other in the regulation of renal hemodynamics and tubular function. Diabetes is characterized by hyperfiltration, yet the roles of ANG II and adenosine receptors for controlling baseline renal blood flow (RBF) or tubular Na(+) handling in diabetes is presently unknown. Accordingly, the changes in their functions were investigated in control and 2-wk streptozotocin-diabetic rats after intrarenal infusion of the ANG II AT1 receptor antagonist candesartan, the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), or their combination.
View Article and Find Full Text PDF