Publications by authors named "Daniela Ottaviano"

Glucose is the preferred nutrient for most living cells and is also a signaling molecule that modulates several cellular processes. Glucose regulates the expression of glucose permease genes in yeasts through signaling pathways dependent on plasma membrane glucose sensors. In the yeast Kluyveromyces lactis, sufficient levels of glucose induction of the low-affinity glucose transporter RAG1 gene also depends on a functional glycolysis, suggesting additional intracellular signaling.

View Article and Find Full Text PDF

In the yeast Kluyveromyces lactis, the inactivation of structural or regulatory glycolytic and fermentative genes generates obligate respiratory mutants which can be characterized by sensitivity to the mitochondrial drug antimycin A on glucose medium (Rag(-) phenotype). Rag(-) mutations can occasionally be generated by the inactivation of genes not evidently related to glycolysis or fermentation. One such gene is the hypoxic regulatory gene KlMGA2.

View Article and Find Full Text PDF

In the yeast Kluyveromyces lactis, the pyruvate decarboxylase gene KlPDC1 is strongly regulated at the transcription level by different environmental factors. Sugars and hypoxia act as inducers of transcription, while ethanol acts as a repressor. Their effects are mediated by gene products, some of which have been characterized.

View Article and Find Full Text PDF

In the respiratory yeast Kluyveromyces lactis, little is known about the factors regulating the metabolic response to oxygen shortage. After searching for homologues of characterized Saccharomyces cerevisiae regulators of the hypoxic response, we identified a gene that we named KlMGA2, which is homologous to MGA2. The deletion of KlMGA2 strongly reduced both the fermentative and respiratory growth rate and altered fatty acid composition and the unsaturation index of membranes.

View Article and Find Full Text PDF