Publications by authors named "Daniela Miranda-Silva"

Article Synopsis
  • Low levels of triiodothyronine (T3) are prevalent in heart failure (HF) patients, and this study aimed to assess the effects of low and replacement doses of T3 in a rat model of HF with preserved ejection fraction (HFpEF).
  • Four groups were evaluated: lean control rats, obese rats with HFpEF, and two groups of obese rats treated with either low or replacement doses of T3, administered via drinking water over 11 weeks.
  • Results indicated that T3 treatment improved metabolic profiles and cardiac function, with the high T3 dose restoring myocardial T3 levels and yielding benefits in calcium handling and heart function, despite no change in overall exercise capacity (VOmax).
View Article and Find Full Text PDF

Heart failure (HF) triggered by cardiovascular and non-cardiovascular diseases is a leading cause of death worldwide and translational research is urgently needed to better understand the mechanisms of the failing heart. For this purpose, rodent models of heart disease combined with cardiac functional assessment have provided valuable insights into the physiological significance of a given genetic or pharmacological modification. In small animals, cardiac function and structure can be evaluated by methods such as echocardiography, telemetry or hemodynamics using conductance catheters.

View Article and Find Full Text PDF

To better understand the left ventricular (LV) reverse remodeling (RR), we describe a rodent model wherein, after aortic banding-induced LV remodeling, mice undergo RR upon removal of the aortic constriction. In this paper, we describe a step-by-step procedure to perform a minimally invasive surgical aortic debanding in mice. Echocardiography was subsequently used to assess the degree of cardiac hypertrophy and dysfunction during LV remodeling and RR and to determine the best timing for aortic debanding.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology often associated with several comorbidities, such as left ventricle pressure overload, diabetes mellitus, obesity, and kidney disease. Its pathophysiology remains obscure mainly due to the complex phenotype induced by all these associated comorbidities and to the scarcity of animal models that adequately mimic HFpEF. Increased oxidative stress, inflammation, and endothelial dysfunction are currently accepted as key players in HFpEF pathophysiology.

View Article and Find Full Text PDF

This study aims to provide new insights into transcriptome and miRome modifications occurring in cardiac reverse remodelling (RR) upon left ventricle pressure-overload relief in mice. Pressure-overload was established in seven-week-old C57BL/6J-mice by ascending aortic constriction. A debanding (DEB) surgery was performed seven weeks later in half of the banding group (BA).

View Article and Find Full Text PDF

Background: Often, pressure overload-induced myocardial remodeling does not undergo complete reverse remodeling after decreasing afterload. Recently, mitochondrial abnormalities and oxidative stress have been successively implicated in the pathogenesis of several chronic pressure overload cardiac diseases. Therefore, we aim to clarify the myocardial energetic dysregulation in (reverse) remodeling, mainly focusing on the mitochondria.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) is currently untreated. Therapeutics development demands effective diagnosis of diastolic dysfunction in animal models mimicking human pathology, which requires appropriate anaesthetics. Here, we investigated which anaesthetic, ketamine/xylazine or isoflurane, could be used to reveal diastolic dysfunction in HFpEF-diseased obese ZSF1 rats by echocardiography.

View Article and Find Full Text PDF

Aims: The metabolic syndrome and associated comorbidities, like diabetes, hypertension and obesity, have been implicated in the development of heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms underlying the development of HFpEF remain to be elucidated. We developed a cardiome-directed network analysis and applied this to high throughput cardiac RNA-sequencing data from a well-established rat model of HFpEF, the obese and hypertensive ZSF1 rat.

View Article and Find Full Text PDF

Echocardiography is a reliable and reproducible method to assess non-invasively cardiac function in clinical and experimental research. Significant progress in the development of echocardiographic equipment and transducers has led to the successful translation of this methodology from humans to rodents, allowing for the scoring of disease severity and progression, testing of new drugs, and monitoring cardiac function in genetically modified or pharmacologically treated animals. However, as yet, there is no standardization in the procedure to acquire echocardiographic measurements in small animals.

View Article and Find Full Text PDF

Background/aims: Heart failure with preserved ejection fraction (HFpEF) is recognised as an important cause of cardiovascular mortality and morbidity, accounting for approximately 50% of heart failure cases. Metabolic-related complications, such as obesity, have been associated with the pathophysiology of this complex syndrome. The anatomic proximity between cardiac visceral adipose tissue (CVAT) and the myocardium has been drawing attention due to its potential pathogenic role in cardiac diseases.

View Article and Find Full Text PDF

Rationale: Efficient communication between heart cells is vital to ensure the anisotropic propagation of electrical impulses, a function mainly accomplished by gap junctions (GJ) composed of Cx43 (connexin 43). Although the molecular mechanisms remain unclear, altered distribution and function of gap junctions have been associated with acute myocardial infarction and heart failure.

Objective: A recent proteomic study from our laboratory identified EHD1 (Eps15 [endocytic adaptor epidermal growth factor receptor substrate 15] homology domain-containing protein 1) as a novel interactor of Cx43 in the heart.

View Article and Find Full Text PDF

Aim: Calcium ions play a pivotal role in matching energy supply and demand in cardiac muscle. Mitochondrial calcium concentration is lower in animal models of heart failure with reduced ejection fraction (HFrEF), but limited information is available about mitochondrial calcium handling in heart failure with preserved ejection fraction (HFpEF).

Methods: We assessed mitochondrial Ca handling in intact cardiomyocytes from Zucker/fatty Spontaneously hypertensive F1 hybrid (ZSF1)-lean (control) and ZSF1-obese rats, a metabolic risk-related model of HFpEF.

View Article and Find Full Text PDF

Aortic Stenosis (AS) is the most frequent valvulopathy in the western world. Traditionally aortic valve replacement (AVR) has been recommended immediately after the onset of heart failure (HF) symptoms. However, recent evidence suggests that AVR outcome can be improved if performed earlier.

View Article and Find Full Text PDF

Several studies have demonstrated that administration of doxorubicin (DOXO) results in cardiotoxicity, which eventually progresses to dilated cardiomyopathy. The present work aimed to evaluate the early myocardial changes of DOXO-induced cardiotoxicity. Male New Zealand White rabbits were injected intravenously with DOXO twice weekly for 8 wk [DOXO-induced heart failure (DOXO-HF)] or with an equivolumetric dose of saline (control).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the heart adapts to acute stretching, focusing particularly on changes in diastolic stiffness that were previously unknown.
  • Experiments showed that stretching the heart muscle in various models (rats, rabbits, and humans) led to a significant reduction in end-diastolic pressure, indicating increased compliance.
  • The research identifies a mechanism involving increased phosphorylation of titin and cGMP-PKG signaling that improves myocardial compliance, but this mechanism appears to be impaired in hearts affected by hypertrophy.
View Article and Find Full Text PDF

Formerly regarded purely as passive energy storage, adipose tissue is now recognized as a vital endocrine organ. Adipocytes secrete diverse peptide hormones named adipokines, which act in a autocrine, paracrine or endocrine way to influence several biological functions. Adipokines comprise diverse bioactive substances, including cytokines, growth, and complement factors, which perform essential regulatory functions related to energy balance, satiety and immunity.

View Article and Find Full Text PDF

Chronic pressure-overload and diabetes mellitus are two frequent disorders affecting the heart. We aimed to characterize myocardial structural and functional changes induced by both conditions. Pressure-overload was established in Wistar-han male rats by supra-renal aortic banding.

View Article and Find Full Text PDF