Optimization of the potency and pharmacokinetic profile of 2,3,4-trisubstituted quinoline, 4, led to the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 6a (AM-0687) and 7 (AM-1430). On the basis of their improved profile, these analogs were selected for in vivo pharmacodynamic (PD) and efficacy experiments in animal models of inflammation. The in vivo PD studies, which were carried out in a mouse pAKT inhibition animal model, confirmed the observed potency of 6a and 7 in biochemical and cellular assays.
View Article and Find Full Text PDFLead optimization efforts resulted in the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 1 (AM-8508) and 2 (AM-9635), with good pharmacokinetic properties. The compounds inhibit B cell receptor (BCR)-mediated AKT phosphorylation (pAKT) in PI3Kδ-dependent in vitro cell based assays. These compounds which share a benzimidazole bicycle are effective when administered in vivo at unbound concentrations consistent with their in vitro cell potency as a consequence of improved unbound drug concentration with lower unbound clearance.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2015
2,3,4-Substituted quinolines such as (10a) were found to be potent inhibitors of PI3Kδ in both biochemical and cellular assays with good selectivity over three other class I PI3K isoforms. Some of those analogs showed favorable pharmacokinetic properties.
View Article and Find Full Text PDFThe development and optimization of a series of quinolinylpurines as potent and selective PI3Kδ kinase inhibitors with excellent physicochemical properties are described. This medicinal chemistry effort led to the identification of 1 (AMG319), a compound with an IC50 of 16 nM in a human whole blood assay (HWB), excellent selectivity over a large panel of protein kinases, and a high level of in vivo efficacy as measured by two rodent disease models of inflammation.
View Article and Find Full Text PDFStructure-based rational design led to the synthesis of a novel series of potent PI3K inhibitors. The optimized pyrrolopyridine analogue 63 was a potent and selective PI3Kβ/δ dual inhibitor that displayed suitable physicochemical properties and pharmacokinetic profile for animal studies. Analogue 63 was found to be efficacious in animal models of inflammation including a keyhole limpet hemocyanin (KLH) study and a collagen-induced arthritis (CIA) disease model of rheumatoid arthritis.
View Article and Find Full Text PDFThe ICOS (Inducible T cell Co-Stimulator)/B7RP-1 (B7-related protein 1) interaction is critical for the proper activation of a T lymphocyte. In this manuscript we describe a systematic in vivo approach to determine the level of blockade required to impair the generation of a T cell-dependent antibody response. We have developed an overall strategy for correlating drug exposure, target saturation, and efficacy in a biological response that can be generalized for most protein therapeutics.
View Article and Find Full Text PDFAutoimmune diseases are marked by the presence of class-switched, high-affinity autoantibodies with pathogenic potential. Costimulation plays an important role in the activation of T cells and the development of T cell-dependent B cell responses. ICOS plays an indispensable role in the development of follicular helper T cells (T(FH) cells), which provide cognate help to germinal center (GC) B cells.
View Article and Find Full Text PDFThe lymphocyte-specific kinase (Lck), a member of the Src family of cytoplasmic tyrosine kinases, is expressed in T cells and natural killer (NK) cells. Genetic evidence, including knockout mice and human mutations, demonstrates that Lck kinase activity is critical for normal T cell development, activation, and signaling. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disease.
View Article and Find Full Text PDFThe lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and natural killer (NK) cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disease.
View Article and Find Full Text PDFThe lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and NK cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection.
View Article and Find Full Text PDFThe L51S mutation in the D10.G4.1 TCR alpha-chain reduces the affinity of the TCR to its ligand by affecting the interactions among the TCR, the beta-chain of I-A(k), and the bound peptide.
View Article and Find Full Text PDF