Publications by authors named "Daniela Menichella"

Peripheral neuropathic pain, which occurs after a lesion or disease affecting the peripheral somatosensory nervous system, is a complex and challenging condition to treat. This chapter will cover molecular mechanisms underlying the pathophysiology of peripheral neuropathic pain, focusing on (1) sensitization of nociceptors, (2) neuro-immune crosstalk, and (3) axonal degeneration and regeneration. The chapter will also emphasize the importance of identifying novel therapeutic targets in non-neuronal cells.

View Article and Find Full Text PDF

Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.

View Article and Find Full Text PDF
Article Synopsis
  • - Painful diabetic neuropathy (PDN) is a common and challenging complication of diabetes, marked by nerve pain linked to changes in nerve cell activity and damage.
  • - Research using single-cell RNA sequencing in a mouse model shows that the Mas-related G protein-coupled receptor d (Mrgprd) is overexpressed in certain pain-related nerve cells in PDN, and blocking its signaling alleviates pain symptoms.
  • - The study suggests that targeting Mrgprd could lead to new and effective treatments for neuropathic pain in PDN, addressing a significant gap in current therapeutic options.
View Article and Find Full Text PDF

Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7.

View Article and Find Full Text PDF

Peripheral neuropathic pain (PNP), neuropathic pain that arises from a damage or disease affecting the peripheral nervous system, is associated with an extremely large disease burden, and there is an increasing and urgent need for new therapies for treating this disorder. In this review we have highlighted therapeutic targets that may be translated into disease modifying therapies for PNP associated with peripheral neuropathy. We have also discussed how genetic studies and novel technologies, such as optogenetics, chemogenetics and single-cell RNA-sequencing, have been increasingly successful in revealing novel mechanisms underlying PNP.

View Article and Find Full Text PDF
Article Synopsis
  • Painful diabetic neuropathy (PDN) affects 25% of diabetics, causing neuropathic pain linked to calcium overload and neurological degeneration in dorsal root ganglion (DRG) neurons.
  • Research shows that elevated mitochondrial fission proteins in DRG neurons lead to fragmented mitochondria and increased calcium signaling due to a high-fat diet in mouse models.
  • Targeting the mitochondrial calcium uniporter may restore normal mitochondrial function, reduce nerve damage, and alleviate pain, suggesting a potential therapeutic approach for PDN and other similar neurodegenerative diseases.
View Article and Find Full Text PDF

Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma.

View Article and Find Full Text PDF

Chronic pain is a disabling disease with limited treatment options. While animal models have revealed important aspects of pain neurobiology, therapeutic translation of this knowledge requires our understanding of these cells and networks of pain in humans. We propose a multi-institutional collaboration to rigorously and ethically address this challenge.

View Article and Find Full Text PDF

Painful diabetic neuropathy (PDN) is an intractable complication of diabetes that affects 25% of patients. PDN is characterized by neuropathic pain and small-fiber degeneration, accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability and loss of their axons within the skin. The molecular mechanisms underlying DRG nociceptor hyperexcitability and small-fiber degeneration in PDN are unknown.

View Article and Find Full Text PDF

Objective: To determine the ability of drugs that activate inhibitory G protein-coupled receptors (GPCRs) expressed in peripheral voltage-gated sodium channel 1.8 (Na 1.8)-positive sensory neurons to control osteoarthritis (OA)-associated pain.

View Article and Find Full Text PDF

Background: Small fiber neuropathy is a well-recognized complication of type 2 diabetes and has been shown to be responsible for both neuropathic pain and impaired wound healing. In previous studies, we have demonstrated that ganglioside GM3 depletion by knockdown of GM3 synthase fully reverses impaired wound healing in diabetic mice. However, the role of GM3 in neuropathic pain and small fiber neuropathy in diabetes is unknown.

View Article and Find Full Text PDF

Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.

View Article and Find Full Text PDF

Background: Painful Diabetic Neuropathy (PDN) is a debilitating syndrome present in a quarter of diabetic patients that has a substantial impact on their quality of life. Despite this significant prevalence and impact, current therapies for PDN are only partially effective. Moreover, the cellular mechanisms underlying PDN are not well understood.

View Article and Find Full Text PDF

MicroRNAs, by modulating gene expression, have been implicated as regulators of various cellular and physiological processes, including differentiation, proliferation, and cancer. Here, we study the role of microRNAs in Schwann cell (SC) differentiation by conditional removal of the microRNA processing enzyme Dicer1. We reveal that both male and female mice lacking Dicer1 in SC (Dicer1 conditional knock-outs) display a severe neurological phenotype resembling congenital hypomyelination.

View Article and Find Full Text PDF

Mice lacking the K+ channel Kir4.1 or both connexin32 (Cx32) and Cx47 exhibit myelin-associated vacuoles, raising the possibility that oligodendrocytes, and the connexins they express, contribute to recycling the K+ evolved during neuronal activity. To study this possibility, we first examined the effect of neuronal activity on the appearance of vacuoles in mice lacking both Cx32 and Cx47.

View Article and Find Full Text PDF

Mutations in Cx32, a gap-junction channel-forming protein, result in X-linked Charcot-Marie-Tooth disease, a demyelinating disease of the peripheral nervous system. However, although oligodendrocytes express Cx32, central myelination is unaffected. To explore this discrepancy, we searched for additional oligodendrocyte connexins.

View Article and Find Full Text PDF

Schwann cells, the myelinating cells of the peripheral nervous system, are derived from the neural crest. Once neural crest cells are committed to the Schwann cell fate, they can take on one of two phenotypes to become myelinating or nonmyelinating Schwann cells, a decision that is determined by interactions with axons. The critical step in the differentiation of myelinating Schwann cells is the establishment of a one-to-one relationship with axons, the so-called "promyelinating" stage of Schwann cell development.

View Article and Find Full Text PDF

In order to better understand the pathogenesis of demyelination in P knockout (P-/-) mice, we analyzed the myelin gene expression and the localization of myelin proteins in P null mouse sciatic nerve. We have demonstrated that the severe demyelinating neuropathy of P-knockout mouse is associated with changes in the program of myelin gene expression. Some changes in myelin gene expression occur early, others occur during adulthood.

View Article and Find Full Text PDF

In a previous report, we demonstrated that a first generation (E1- and E3-deleted) recombinant adenovirus can transduce expression of the E. coli lacZ gene into Schwann cells, both in vitro and in vivo, suggesting that this method might be useful for future therapy of peripheral neuropathy, including CMT1. Adenoviral-mediated gene transfer was limited, however, by demyelination and Wallerian degeneration at the site of virus injection, as well as by attenuation of viral gene expression over time.

View Article and Find Full Text PDF