Publications by authors named "Daniela Melisi"

N-Palmitoylethanolamide (PEA) is emerging as a novel therapeutic agent in the treatment of neuropathic pain and neurodegenerative diseases. Unfortunately, PEA poorly reaches the central nervous system (CNS), after peripheral administration, since it is inactivated through intracellular hydrolysis by lipid amidases. Since prodrug approach is one of the most popular methods used to increase cell permeability, the aim of this paper consists in the synthesis of a new galactosyl prodrug of PEA, the palmitoylethanolamide-succinamyl-D-galactos-6'-yl ester (PEAGAL).

View Article and Find Full Text PDF

Purpose: Epidemiological, clinical, and laboratory studies have suggested that ibuprofen, a commonly used nonsteroidal anti-inflammatory drug, inhibits the promotion and proliferation of certain tumors. Recently, we demonstrated the antiproliferative effects of ibuprofen on the human gastric cancer cell line MKN-45. However, high doses of ibuprofen were required to elicit these antiproliferative effects in vitro.

View Article and Find Full Text PDF

The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release.

View Article and Find Full Text PDF
Article Synopsis
  • D-galactose is a simple natural compound used in prodrug strategies to enhance drug effectiveness by improving site specificity, reducing toxicity, and increasing chemical stability.
  • Galactosyl prodrugs help maintain the beneficial effects of the original drug while minimizing side effects by improving selectivity towards specific cells, like those in the brain, liver, and tumors.
  • The review highlights various synthetic methods to utilize D-galactose in drug design, showcasing its potential for improving the pharmacological targeting and overall performance of parent drugs.
View Article and Find Full Text PDF

This study has investigated whether the galactosyl ester prodrug of N(ω)-nitro-L-arginine (NAGAL), shows enhanced analgesic efficacy in healthy mice and in models of visceral and neuropathic pain: the writhing test and the spared nerve injury (SNI), respectively. NAGAL was compared to methyl ester pro-drug of N(ω)-nitro-l-arginine (L-NAME), a widely exploited non-specific nitric oxide synthase (NOS) inhibitor, for analgesic potential. The writhing test revealed that the ED(50) value, along with the 95% confidence limit (CL) was 3.

View Article and Find Full Text PDF

Purpose: The aim of the present study was to synthetize and characterize novel sol-gel organic-inorganic hybrid materials to be used for controlled drug delivery application.

Materials And Methods: Organic-inorganic hybrid class I materials based on poly(epsilon-caprolactone) (PCL 6, 12, 24 and 50 wt%) and zirconia-yttria (ZrO2-5%Y2O3) were synthesized by a sol-gel method, from a multicomponent solution containing zirconium propoxide [Zr(OC2H7)4], yttrium chloride (YCl3), PCL, water and chloroform (CHCl3). The structure of the hybrids was obtained by means of hydrogen bonds between the Zr-OH group (H-donor) in the sol-gel intermediate species and the carboxylic group (H-acceptor) in the repeating units of the polymer.

View Article and Find Full Text PDF

The 6-methoxy-2-phenylimidazo[1,2-b]pyridazine-3-carboxylic acid, DM2, exerts anti-absence activity and blocks Cav3.1 channel, a T-type voltage-dependent Ca(2+) channel subtype, in vitro. The current study investigated the effect of intra-ventrolateral periaqueductal grey (VLPAG) administration of DM2 on formalin-induced nocifensive responses in rats.

View Article and Find Full Text PDF

The methyl ester prodrug of N(omega)-nitro-L-arginine (L-NAME) has been reported to exert anticancer effects against several human tumors, including thyroid carcinoma, by inhibiting nitric oxide synthase (NOS). However, chronic administration of L-NAME has often led to adverse events causing cardiovascular alterations due to its potential toxic effect. Here we report for the first time the synthesis of the galactosyl ester prodrug of N(omega)-nitro-L-arginine, NAGAL, a prodrug capable of inhibiting NOS more efficiently and with fewer adverse events than its parent drug.

View Article and Find Full Text PDF

With the help of single-cell microflorimetry, (45)Ca(2+) radiotracer fluxes, and patch-clamp in whole-cell configuration, we examined the effect of the amiloride derivative 3-amino-6-chloro-5-[(4-chloro-benzyl)amino]-N-[[(2,4-dimethylbenzyl)amino]iminomethyl]-pyrazinecarboxamide (CB-DMB) on the activity of the three isoforms of the Na(+)/Ca(2+) exchanger (NCX) and on several other membrane currents including voltage- and pH-sensitive ones. This amiloride analog suppressed the bidirectional activity of all NCX isoforms in a concentration-dependent manner. The IC(50) values of CB-DMB were in the nanomolar range for the outward and the inward components of the bidirectional NCX1, NCX2, and NCX3 activity.

View Article and Find Full Text PDF

Although ketorolac is one of the most potent anti-inflammatory and analgesic drugs, its use has been strongly limited owing to the high incidence of adverse effects reported, particularly in the gastrointestinal tract. Using the prodrug approach, which allows the reduction of toxicological features of the parent drug without altering its pharmacological properties, we synthesized an orally administrable prodrug of ketorolac by means of its reversible conjugation to D-galactose (ketogal). In a single dose study, its pharmacokinetic profile was compared with that of ketorolac.

View Article and Find Full Text PDF

It is presently unclear whether the antiseizure effects exerted by NSAIDs are totally dependent on COX inhibition or not. To clarify this point we investigated whether 7-methyl-2-phenylimidazo[1,2-b]pyridazine-3-carboxylic acid (DM1) and 6-methoxy-2-phenylimidazo[1,2-b]pyridazine-3-carboxylic acid (DM2), two imidazo[1,2-b]pyridazines structurally related to indomethacin (IDM) but ineffective in blocking COXs, retain IDM antiabsence activity. When administered by intraperitoneal injection in WAG/Rij rats, a rat strain which spontaneously develops SWDs, both DM1 and DM2 dose-dependently suppressed the occurrence of these seizures.

View Article and Find Full Text PDF

Synthetic zeolites were studied in order to investigate their ability to encapsulate and to release drugs. In particular, a zeolite X and a zeolitic product obtained from a cocrystallization of zeolite X and zeolite A were examined. These materials were characterized by chemical analyses (ICP-AES), X-ray diffraction, nitrogen adsorption isotherm, scanning electron microscopy, laser diffraction, and infrared spectroscopy.

View Article and Find Full Text PDF

Nitric oxide (NO) is critical for the normal physiological regulation of the nervous system and other tissues. L-Arginine, but not D-arginine, is the natural substrate for nitric oxide synthase (NOS), for it is enzymatically converted to NO and L-citrulline. However, recent evidence suggests that D-arginine can also produce NO and NO-derivatives via a different pathway.

View Article and Find Full Text PDF

Novel glycosyl derivatives of dopamine and L-dopa (I-IV) are synthesized in order to overcome the problem of blood-brain barrier low permeability of dopamine and of low bioavailability of its precursor L-dopa. Esters synthesized link dopamine and L-dopa, by a succinyl linker, to C-3 position of glucose (I and II) and to C-6 of galactose (II and IV). The chemical and enzymatic stabilities of esters synthesized were evaluated in order to determine both their stability in aqueous medium and their feasibility in undergoing enzymatic cleavage by rat plasma to regenerate the original drug.

View Article and Find Full Text PDF