Publications by authors named "Daniela Mastronicola"

The panel was developed and optimized for monitoring changes in homing capacity and functional diversity of human CD4 conventional and regulatory T cell subsets. The analysis was based on expression of only surface markers in freshly isolated peripheral blood mononuclear cells (PBMCs) to reduce at minimum any alteration due to permeabilization or freezing/thawing procedures. We included markers to assess the distribution of naïve and memory populations based on the expression of CD45RA, CCR7, CD25, CD28 and CD95 in both conventional and regulatory T cells.

View Article and Find Full Text PDF

To analyze immune cell populations accurately, a large number of Peripheral Blood Mononuclear Cells (PBMCs) must be obtained from blood samples. Traditional manual isolation and SepMate isolation of PBMCs consistently yield blood-stained plasma layers and overall low numbers of CD4+ and CD8+ cells. Here, we describe an optimized protocol, using PBS with EDTA to increase PBMC yield from pregnant patients.

View Article and Find Full Text PDF

CD4 CD25 CD127 FOXP3 T regulatory cells are responsible for maintaining immune tolerance and controlling excessive immune responses. Treg cell use in pre-clinical animal models showed the huge therapeutic potential of these cells in immune-mediated diseases and laid the foundations for their applications in therapy in humans. Currently, there are several clinical trials utilizing the adoptive transfer of Treg cells to reduce the morbidity in autoimmune disorders, allogeneic HSC transplantation, and solid organ transplantation.

View Article and Find Full Text PDF

Hydrogen sulfide (HS), a known inhibitor of cytochrome oxidase (CcOX), plays a key signaling role in human (patho)physiology. HS is synthesized endogenously and mainly metabolized by a mitochondrial sulfide-oxidizing pathway including sulfide:quinone oxidoreductase (SQR), whereby HS-derived electrons are injected into the respiratory chain stimulating O consumption and ATP synthesis. Under hypoxic conditions, HS has higher stability and is synthesized at higher levels with protective effects for the cell.

View Article and Find Full Text PDF

The effects of physiological oxygen tension on Nuclear Factor-E2-Related Factor 2 (Nrf2)-regulated redox signaling remain poorly understood. We report the first study of Nrf2-regulated signaling in human primary endothelial cells (EC) adapted long-term to physiological O2 (5%). Adaptation of EC to 5% O2 had minimal effects on cell ultrastructure, viability, basal redox status or HIF1-α expression.

View Article and Find Full Text PDF

The microaerophilic protist Giardia intestinalis is the causative agent of giardiasis, one of the most common intestinal infectious diseases worldwide. The pathogen lacks not only respiratory terminal oxidases (being amitochondriate), but also several conventional antioxidant enzymes, including catalase, superoxide dismutase and glutathione peroxidase. In spite of this, since living attached to the mucosa of the proximal small intestine, the parasite should rely on an efficient antioxidant system to survive the oxidative and nitrosative stress conditions found in this tract of the human gut.

View Article and Find Full Text PDF

Giardiasis is a common diarrheal disease worldwide caused by the protozoan parasite Giardia intestinalis. It is urgent to develop novel drugs to treat giardiasis, due to increasing clinical resistance to the gold standard drug metronidazole (MTZ). New potential antiparasitic compounds are usually tested for their killing efficacy against G.

View Article and Find Full Text PDF

The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2 (-•)) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO(-)).

View Article and Find Full Text PDF

Giardia intestinalis is the most frequent protozoan agent of intestinal diseases worldwide. Though commonly regarded as an anaerobic pathogen, it preferentially colonizes the fairly oxygen-rich mucosa of the proximal small intestine. Therefore, when testing new potential antigiardial drugs, O2 should be taken into account, since it also reduces the efficacy of metronidazole, the gold standard drug against giardiasis.

View Article and Find Full Text PDF

The 7WD4 and 7PA2 cell lines, widely used as cellular models for Alzheimer's disease (AD), have been used to investigate the effects of amyloid-β protein precursor overexpression and amyloid-β (Aβ) oligomer accumulation on mitochondrial function. Under standard culture conditions, both cell lines, compared to Chinese hamster ovary (CHO) control cells, displayed an ~5% decrease of O2 respiration as sustained by endogenous substrates. Functional impairment of the respiratory chain was found distributed among the protein complexes, though more evident at the level of complex I and complex IV.

View Article and Find Full Text PDF

Extending our previous observations, we have shown on HaCat cells that melatonin, at ~10-9 M concentration, transiently raises not only the expression of the neuronal nitric oxide synthase (nNOS) mRNA, but also the nNOS protein synthesis and the nitric oxide oxidation products, nitrite and nitrate. Interestingly, from the cell bioenergetic point of view, the activated NO-related chemistry induces a mild decrease of the oxidative phosphorylation (OXPHOS) efficiency, paralleled by a depression of the mitochondrial membrane potential. The OXPHOS depression is apparently balanced by glycolysis.

View Article and Find Full Text PDF

Cytochrome bd oxygen reductase from Escherichia coli has three hemes, b558, b595 and d. We found that the enzyme, as-prepared or in turnover with O2, rapidly decomposes H2O2 with formation of approximately half a mole of O2 per mole of H2O2. Such catalase activity vanishes upon cytochrome bd reduction, does not compete with the oxygen-reductase activity, is insensitive to NO, CO, antimycin-A and N-ethylmaleimide (NEM), but is inhibited by cyanide (Ki ~2.

View Article and Find Full Text PDF

Nitric oxide (NO) reacts with Complex I and cytochrome c oxidase (CcOX, Complex IV), inducing detrimental or cytoprotective effects. Two alternative reaction pathways (PWs) have been described whereby NO reacts with CcOX, producing either a relatively labile nitrite-bound derivative (CcOX-NO(2) (-), PW1) or a more stable nitrosyl-derivative (CcOX-NO, PW2). The two derivatives are both inhibited, displaying different persistency and O(2) competitiveness.

View Article and Find Full Text PDF

Cell respiration is controlled by nitric oxide (NO) reacting with respiratory chain complexes, particularly with Complex I and IV. The functional implication of these reactions is different owing to involvement of different mechanisms. Inhibition of complex IV is rapid (milliseconds) and reversible, and occurs at nanomolar NO concentrations, whereas inhibition of complex I occurs after a prolonged exposure to higher NO concentrations.

View Article and Find Full Text PDF

A novel role of melatonin was unveiled, using immortalized human keratinocyte cells (HaCaT) as a model system. Within a time window compatible with its circadian rhythm, melatonin at nanomolar concentration raised both the expression level of the neuronal nitric oxide synthase mRNA and the nitric oxide oxidation products, nitrite and nitrate. On the same time scale, a depression of the mitochondrial membrane potential was detected together with a decrease of the oxidative phosphorylation efficiency, compensated by glycolysis as testified by an increased production of lactate.

View Article and Find Full Text PDF

Background: The reactions between Complex IV (cytochrome c oxidase, CcOX) and nitric oxide (NO) were described in the early 60's. The perception, however, that NO could be responsible for physiological or pathological effects, including those on mitochondria, lags behind the 80's, when the identity of the endothelial derived relaxing factor (EDRF) and NO synthesis by the NO synthases were discovered. NO controls mitochondrial respiration, and cytotoxic as well as cytoprotective effects have been described.

View Article and Find Full Text PDF

Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry.

View Article and Find Full Text PDF

Experimental evidence suggests that the prokaryotic respiratory cytochrome bd quinol oxidase is responsible for both bioenergetic functions and bacterial adaptation to different stress conditions. The enzyme, phylogenetically unrelated to the extensively studied heme-copper terminal oxidases, is found in many commensal and pathogenic bacteria. Here, we review current knowledge on the catalytic intermediates of cytochrome bd and their reactivity towards nitric oxide (NO).

View Article and Find Full Text PDF

Giardia intestinalis is the microaerophilic protozoon causing giardiasis, a common infectious intestinal disease. Giardia possesses an O(2) -scavenging activity likely essential for survival in the host. We report that Giardia trophozoites express the O(2) -detoxifying flavodiiron protein (FDP), detected by immunoblotting, and are able to reduce O(2) to H(2) O rapidly (∼3 μM O(2) × min × 10(6) cells at 37 °C) and with high affinity (C(50) = 3.

View Article and Find Full Text PDF

Flavohemoglobins (flavoHbs), commonly found in bacteria and fungi, afford protection from nitrosative stress by degrading nitric oxide (NO) to nitrate. Giardia intestinalis, a microaerophilic parasite causing one of the most common intestinal human infectious diseases worldwide, is the only pathogenic protozoon as yet identified coding for a flavoHb. By NO amperometry we show that, in the presence of NADH, the recombinant Giardia flavoHb metabolizes NO with high efficacy under aerobic conditions (TN=116+/-10s(-1) at 1microM NO, T=37 degrees C).

View Article and Find Full Text PDF

Flavodiiron proteins (FDPs) are enzymes identified in prokaryotes and a few pathogenic protozoa, which protect microorganisms by reducing O(2) to H(2)O and/or NO to N(2)O. Unlike most prokaryotic FDPs, the protozoan enzymes from the human pathogens Giardia intestinalis and Trichomonas vaginalis are selective towards O(2). UV/vis and EPR spectroscopy showed that, differently from the NO-consuming bacterial FDPs, the Giardia FDP contains an FMN with reduction potentials for the formation of the single and the two-electron reduced forms very close to each other (E(1)=-66+/-15mV and E(2)=-83+/-15mV), a condition favoring destabilization of the semiquinone radical.

View Article and Find Full Text PDF

Ataxia Telangiectasia (AT) patients are particularly sensitive to oxidative-nitrosative stress. Nitric oxide (NO) controls mitochondrial respiration via the reversible inhibition of complex IV. The mitochondrial response to NO of AT lymphoblastoid cells was investigated.

View Article and Find Full Text PDF

Available information on the molecular mechanisms by which nitric oxide (NO) controls the activity of the respiratory enzyme (cytochrome-c-oxidase) is reviewed. We report that, depending on absolute electron flux, NO at physiological concentrations reversibly inhibits cytochrome-c-oxidase by two alternative reaction pathways, yielding either a nitrosyl- or a nitrite-heme a3 derivative. We address a number of hypotheses, envisaging physiological and/or pathological effects of the reactions between NO and cytochrome-c-oxidase.

View Article and Find Full Text PDF

Over the past decade it was discovered that, over-and-above multiple regulatory functions, nitric oxide (NO) is responsible for the modulation of cell respiration by inhibiting cytochrome c oxidase (CcOX). As assessed at different integration levels (from the purified enzyme in detergent solution to intact cells), CcOX can react with NO following two alternative reaction pathways, both leading to an effective, fully reversible inhibition of respiration. A crucial finding is that the rate of electron flux through the respiratory chain controls the mechanism of inhibition by NO, leading to either a "nitrosyl" or a "nitrite" derivative.

View Article and Find Full Text PDF