Background: Specific microglia responses are thought to contribute to the development and progression of neurodegenerative diseases, including Parkinson's disease (PD). However, the phenotypic acquisition of microglial cells and their role during the underlying neuroinflammatory processes remain largely elusive. Here, according to the multiple-hit hypothesis, which stipulates that PD etiology is determined by a combination of genetics and various environmental risk factors, we investigate microglial transcriptional programs and morphological adaptations under PARK7/DJ-1 deficiency, a genetic cause of PD, during lipopolysaccharide (LPS)-induced inflammation.
View Article and Find Full Text PDFSporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism.
View Article and Find Full Text PDFParkinson's disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from sporadic PD (sPD) patients.
View Article and Find Full Text PDFPyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4 regulatory T cells (T cells). DJ-1 binds to PDHE1-β (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS).
View Article and Find Full Text PDFDirect reprogramming based on genetic factors resembles a promising strategy to replace lost cells in degenerative diseases such as Parkinson's disease. For this, we developed a knock-in mouse line carrying a dual dCas9 transactivator system (dCAM) allowing the conditional in vivo activation of endogenous genes. To enable a translational application, we additionally established an AAV-based strategy carrying intein-split-dCas9 in combination with activators (AAV-dCAS).
View Article and Find Full Text PDFParkinson's disease (PD) is a still incurable neurodegenerative disorder with a highly complex etiology. While about 10% of cases are associated with single-gene mutations, the majority of PD is thought to originate from a combination of factors such as environmental impact, lifestyle and aging. Even though investigations into the genetically caused cases have uncovered major pathomechanisms of the disease there still exists a wide gap concerning the molecular impact of the other risk factors.
View Article and Find Full Text PDFPINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential.
View Article and Find Full Text PDFParkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of -linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons.
View Article and Find Full Text PDFDopaminergic neurons in the ventral mesencephalon (the ventral mesencephalic dopaminergic complex) are known for their role in a multitude of behaviors, including cognition, reward, addiction and voluntary movement. Dysfunctions of these neurons are the underlying cause of various neuropsychiatric disorders, such as depression, addiction and schizophrenia. In addition, Parkinson's disease (PD), which is the second most common degenerative disease in developed countries, is characterized by the degeneration of dopaminergic neurons, leading to the core motor symptoms of the disease.
View Article and Find Full Text PDFThe protracted and age-dependent degeneration of dopamine (DA)-producing neurons of the Substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) in the mammalian midbrain is a hallmark of human Parkinson's Disease (PD) and of certain genetic mouse models of PD, such as mice heterozygous for the homeodomain transcription factor Engrailed 1 (En1(+/-) mice). Neurotoxin-based animal models of PD, in contrast, are characterized by the fast and partly reversible degeneration of the SNc and VTA DA neurons. The secreted protein WNT1 was previously shown to be strongly induced in the neurotoxin-injured adult ventral midbrain (VM), and to protect the SNc and VTA DA neurons from cell death in this context.
View Article and Find Full Text PDFNeddylation is a ubiquitylation-like pathway that controls cell cycle and proliferation by covalently conjugating Nedd8 to specific targets. However, its role in neurons, nonreplicating postmitotic cells, remains unexplored. Here we report that Nedd8 conjugation increased during postnatal brain development and is active in mature synapses, where many proteins are neddylated.
View Article and Find Full Text PDFThe normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice.
View Article and Find Full Text PDFMissense mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are linked to autosomal dominant forms of Parkinson's disease (PD). In order to get insights into the physiological role of Lrrk2, we examined the distribution of Lrrk2 mRNA and different splice variants in the developing murine embryo and the adult brain of Mus musculus. To analyse if the Lrrk2-paralog, Lrrk1, may have redundant functions in PD-development, we also compared Lrrk1 and Lrrk2 expression in the same tissues.
View Article and Find Full Text PDFParkinson's Disease (PD) is the most common neurodegenerative movement disorder. Autosomal-recessive mutations in the mitochondrial protein kinase PINK1 (PTEN-induced kinase 1) account for 1-2% of the hereditary early-onset cases. To study the mechanisms underlying disease development, we generated Pink1-deficient mice.
View Article and Find Full Text PDFAlzheimer's disease is a neurodegenerative disorder of the elderly and advancing age is the major risk factor for Alzheimer's disease development. Telomere shortening represents one of the molecular causes of ageing that limits the proliferative capacity of cells, including neural stem cells. Studies on telomere lengths in patients with Alzheimer's disease have revealed contrary results and the functional role of telomere shortening on brain ageing and Alzheimer's disease is not known.
View Article and Find Full Text PDFMutations in leucine-rich repeat kinase 2 (LRRK2) are the single most common cause of inherited Parkinson's disease. Little is known about its involvement in the pathogenesis of Parkinson's disease mainly because of the lack of knowledge about the physiological role of LRRK2. To determine the function of LRRK2, we studied the impact of short hairpin RNA-mediated silencing of LRRK2 expression in cortical neurons.
View Article and Find Full Text PDFBackground: Lack of appropriate tools and techniques to study fate and functional integration of newly generated neurons has so far hindered understanding of neurogenesis' relevance under physiological and pathological conditions. Current analyses are either dependent on mitotic labeling, for example BrdU-incorporation or retroviral infection, or on the detection of transient immature neuronal markers. Here, we report a transgenic mouse model (DCX-CreERT2) for time-resolved fate analysis of newly generated neurons.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have regulatory functions during vertebrate embryogenesis. They are short approximately 21bp long endogenously expressed single-stranded RNAs, which preferentially bind to complementary sequences in the 3' untranslated regions (UTR) of mRNAs and typically down-regulate the respective target mRNAs by translational repression or enhanced mRNA degradation. The Notch ligand Delta-like 1 (Dll1) is expressed in a highly dynamic pattern and has pleiotropic functions during embryogenesis and in adult tissues.
View Article and Find Full Text PDFPeriphilin is involved in multiple processes in vivo. To explore its physiological role from an organismic perspective, we generated mice with a gene trap insertion in the periphilin-1 gene. Based on beta-gal reporter activity, a widespread periphilin expression was evident, especially in the developing somites and limbs, the embryonic nervous system, and the adult brain.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 0.7% of the elderly population (defined as over 65 years of age). PD is clinically characterized by resting tremor, muscular rigidity, hypokinesia and postural instability.
View Article and Find Full Text PDFThere is considerable interest in examining the genes that may contribute to anxiety. We examined the function of ERK/MAPK in the acquisition of conditioned fear, as measured by fear-potentiated startle (FPS) in mice as a model for anticipatory anxiety in humans. We characterized the following for the first time in the mouse: (1) the expression of the ERK/MAPK signaling pathway components at the protein level in the lateral amygdala (LA); (2) the time course of activation of phospho-activated MAPK in the LA after fear conditioning; (3) if pharmacological inhibition of pMAPK could modulate the acquisition of FPS; (4) the cell-type specificity of pMAPK in the LA after fear conditioning.
View Article and Find Full Text PDFFibroblast growth factors (FGFs) secreted from the midbrain-rhombomere 1 (r1) boundary instruct cell behavior in the surrounding neuroectoderm. For example, a combination of FGF and sonic hedgehog (SHH) can induce the development of the midbrain dopaminergic neurons, but the mechanisms behind the action and integration of these signals are unclear. We studied how FGF receptors (FGFRs) regulate cellular responses by analyzing midbrain-r1 development in mouse embryos, which carry different combinations of mutant Fgfr1, Fgfr2, and Fgfr3 alleles.
View Article and Find Full Text PDFMutations in the PARK7 gene encoding DJ-1 cause autosomal recessive Parkinson disease. The most deleterious point mutation is the L166P substitution, which resides in a structure motif comprising two alpha-helices (G and H) separated by a kink. Here we subjected the C-terminal helix-kink-helix motif to systematic site-directed mutagenesis, introducing helix-incompatible proline residues as well as conservative substitutions into the helical interface.
View Article and Find Full Text PDFThe mid-/hindbrain organizer (MHO) is characterized by the expression of a network of genes, which controls the patterning and development of the prospective midbrain and anterior hindbrain. One key molecule acting at the MHO is the fibroblast growth factor (Fgf) 8. Ectopic expression of Fgf8 induces genes that are normally expressed at the mid-/hindbrain boundary followed by the induction of midbrain and anterior hindbrain structures.
View Article and Find Full Text PDF