Pleural mesothelioma (PM) is a rare and aggressive neoplasm that originates from the pleural mesothelium and whose onset is mainly linked to exposure to asbestos, which cannot be attacked with truly effective therapies with consequent poor prognosis. The rationale of this study is based on the use of mesenchymal stromal cells (MSCs) as a vehicle for chemotherapy drugs to be injected directly into the pathological site, such as the pleural cavity. The study involves the use of a conventional chemotherapeutic drug, Paclitaxel (PTX), which is widely used in the treatment of different types of solid tumors, including PM, although some limitations are related to pharmacokinetic aspects.
View Article and Find Full Text PDFPleural mesothelioma is a rare neoplastic disease with aggressive features. Patient survival is poor due to the lack of early symptoms and the absence of effective therapeutic strategies. The development of pleural mesothelioma is mainly associated with asbestos exposure and related chronic inflammation.
View Article and Find Full Text PDFAdvanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded , with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy .
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is a very aggressive disease even in its early stages and is characterized by a severe prognosis. Neoadjuvant chemotherapy is one of the milestones of treatment, and paclitaxel (PTX) is among the most active drugs used in this setting. However, despite its efficacy, peripheral neuropathy occurs in approximately 20-25% of cases and represents the dose-limiting toxicity of this drug.
View Article and Find Full Text PDFBackground Aims: Advanced therapy medicinal products (ATMPs) are novel drugs based on genes, cells or tissues developed to treat many different diseases. Stability studies of each new ATMP need to be performed to define its shelf life and guarantee efficacy and safety upon infusion, and these are presently based on guidelines originally drafted for standard pharmaceutical drugs, which have properties and are stored in conditions quite different from cell products. The aim of this report is to provide evidence-based information for stability studies on ATMPs that will facilitate the interlaboratory harmonization of practices in this area.
View Article and Find Full Text PDFDendritic cells (DCs) are immune specialized cells playing a critical role in promoting immune response against antigens, and may represent important targets for therapeutic interventions in cancer. DCs can be stimulated ex vivo with pro-inflammatory molecules and loaded with tumor-specific antigen(s). Protocols describing the specific details of DCs vaccination manufacturing vary widely, but regardless of the employed protocol, the DCs vaccination safety and its ability to induce antitumor responses is clearly established.
View Article and Find Full Text PDFMalignant Pleural Mesothelioma (MPM) is a rare and aggressive neoplasm of the pleural mesothelium, mainly associated with asbestos exposure and still lacking effective therapies. Modern targeted biological strategies that have revolutionized the therapy of other solid tumors have not had success so far in the MPM. Combination immunotherapy might achieve better results over chemotherapy alone, but there is still a need for more effective therapeutic approaches.
View Article and Find Full Text PDFBackground: Malignant Pleural Mesothelioma (MPM) is an aggressive tumor that has a significant incidence related to asbestos exposure with no effective therapy and poor prognosis. The role of mesenchymal stromal cells (MSCs) in cancer is controversial due to their opposite effects on tumor growth and in particular, only a few data are reported on MSCs and MPM.
Methods: We investigated the in vitro efficacy of adipose tissue-derived MSCs, their lysates and secretome against different MPM cell lines.
The pathophysiological mechanisms of Moyamoya angiopathy (MA), which is a rare cerebrovascular condition characterized by recurrent ischemic/hemorrhagic strokes, are still largely unknown. An imbalance of vasculogenic/angiogenic mechanisms has been proposed as one possible disease aspect. Circulating endothelial progenitor cells (cEPCs) have been hypothesized to contribute to vascular remodeling of MA, but it remains unclear whether they might be considered a disease effect or have a role in disease pathogenesis.
View Article and Find Full Text PDFBackground: The efficacy of dendritic cell (DC) immunotherapy as a single therapeutic modality for the treatment of glioblastoma (GBM) patients remains limited. In this study, we evaluated in patients with GBM recurrence the immune-mediated effects of DC loaded with autologous tumor lysate combined with temozolomide (TMZ) or tetanus toxoid (TT).
Methods: In the phase I-II clinical study DENDR2, 12 patients were treated with 5 DC vaccinations combined with dose-dense TMZ.
Dendritic cells (DC) are the most potent antigen-presenting cells, strongly inducers of T cell-mediated immune responses and, as such, broadly used as vaccine adjuvant in experimental clinical settings. DC are widely generated from human monocytes following in vitro protocols which require 5-7 days of differentiation with GM-CSF and IL-4 followed by 2-3 days of activation/maturation. In attempts to shorten the vaccine's production, Fast-DC protocols have been developed.
View Article and Find Full Text PDFBackground: The Wilms tumor antigen 1 (WT1) is over-expressed in a vast majority of adult and childhood acute leukemia and myelodysplastic syndromes, being lowly or transiently expressed in normal tissues and hematopoietic stem cells (HSCs). A number of HLA-restricted WT1 epitopes are immunogenic, allowing the in vitro induction of WT1-specific cytotoxic T lymphocytes (CTLs) from patients and healthy donors.
Aim: The aim of the study was to investigate the feasibility of producing WT1-specific CTLs suitable for somatic cell therapy to prevent or treat relapse in children with acute myeloid or lymphoblastic leukemia given haploidentical HSC transplantation (haplo-HSCT).
Treatment of advanced metastatic colorectal cancer (mCRC) patients is associated with a poor prognosis and significant morbidity. Moreover, targeted therapies such as anti-epidermal growth factor receptor (EGFR) have no effect in metastatic patients with tumors harboring a mutation in the RAS gene. The failure of conventional treatment to improve outcomes in mCRC patients has prompted the development of adoptive immunotherapy approaches including natural killer (NK)-based therapies.
View Article and Find Full Text PDFStroke is the most common neurological cause of morbidity and mortality in industrialized countries, afflicting 15 million people every year. The numbers are expected to increase, mostly due to aging populations. One in five stroke patients dies, and one in three are left with permanent disabilities.
View Article and Find Full Text PDFMature endothelial cells are known to sense microbial products through toll-like receptors (TLRs), a family of membrane proteins which serve as pathogen recognition and signaling elements; however, there are limited data in the literature about the expression and function of TLRs in human circulating endothelial colony forming cells (ECFCs), which are considered the most likely endothelial precursors. We expanded and differentiated in vitro umbilical cord blood (UCB) and adult peripheral blood (PB) ECFCs and studied the expression of TLR1 to TLR10 mRNA by qPCR analysis, and we further characterized TLR function in ECFCs through functional assays including in vitro ECFC growth and differentiation, assessment of cytokine production, and measurement of intracellular Ca(2+) signals. Both UCB- and PB-ECFCs had detectable mRNA levels of all the TLRs from 1 to 10; TLR4, a sensor of Gram-negative bacterial lipopolysaccharide (LPS), had a higher level compared to other TLRs.
View Article and Find Full Text PDFUnlabelled: Cell therapy based on dendritic cells (DCs) pulsed with tumor lysate is a promising approach in addition to conventional therapy for the treatment of patients with glioblastoma (GB). The success of this approach strongly depends on the ability to generate high-quality, functionally mature DCs (mDCs), with a high level of standardization and in compliance with Good Manufacturing Practices. In the cell factory of the Carlo Besta Foundation, two phase I clinical trials on immunotherapy with tumor lysate-loaded DCs as treatment for GB are ongoing.
View Article and Find Full Text PDFBackground Aims: In attempting to develop new strategies to circumvent the immunosuppression associated with glioblastoma (GB), novel approaches have been designed using dendritic cell (DC)-based vaccination, which is considered a promising strategy to attack high-grade glioma. In previous studies, we demonstrated that human mesenchymal stromal cells without genetic manipulation but primed with Paclitaxel (PTX) acquire a potent anti-tumor activity, providing an interesting new biological approach for drug delivery. On the basis of these results, we here investigated whether both CD14+ and their derived DCs may behave like mesenchymal stromal cells acquiring anti-tumor activity on priming with PTX.
View Article and Find Full Text PDFBackground: In osteosarcoma (OS) and most Ewing sarcoma (EWS) patients, the primary tumor originates in the bone. Although tumor resection surgery is commonly used to treat these diseases, it frequently leaves massive bone defects that are particularly difficult to be treated. Due to the therapeutic potential of mesenchymal stem cells (MSCs), OS and EWS patients could benefit from an autologous MSCs-based bone reconstruction.
View Article and Find Full Text PDFUse of alternative donors/sources of hematopoietic stem cells (HSC), such as cord blood (CB) or HLA-haploidentical (Haplo)-related donors, is associated with a significant delay in immune reconstitution after transplantation. Long-term T-cell immune reconstitution largely relies on the generation of new T cells in the recipient thymus, which can be evaluated through signal joint (sj) and beta T-cell-Receptor Excision Circles (TREC) quantification. We studied two groups of 33 and 24 children receiving, respectively, HSC Transplantation (HSCT) from an HLA-haploidentical family donor or an unrelated CB donor, for both malignant (46) and non-malignant disorders (11).
View Article and Find Full Text PDFThe transplantation of two cord blood (CB) units obtained from unrelated donors (double CBT) is an effective strategy for adult patients with hematologic malignancies. Sustained hematopoiesis after double CBT is usually derived from a single donor, and only a few transplantation recipients displaying a stable mixed donor-donor chimerism have been reported. We investigated the mechanisms underlying single-donor predominance in double CBT by studying in vitro the role of the graft-versus-graft cell-mediated immune effect in two-way mixed-lymphocyte culture, along with the contribution of differential hematopoietic progenitor (HP) potency in HP mixed cultures.
View Article and Find Full Text PDFBackground: High levels of cytokines in juvenile idiopathic arthritis (JIA) can alter target cell sensitivity to growth hormone (GH) leading to short stature in adulthood. We hypothesized that the down-regulation of GH receptor (GHR) gene expression could be involved in growth failure of children with JIA.
Methods: In 18 (12 F and 6 M) prepubertal JIA patients and 13 age- and sex-matched healthy children, we evaluated serum growth-promoting factors and inflammatory indexes.
Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative disorder of early childhood characterized by mutations of the RAS-RAF-MAP kinase signaling pathway. We report the case of a child with a diagnosis of JMML carrying two mutations of NRAS gene (c.37G>C and c.
View Article and Find Full Text PDFWe report the case of a child with clinical and haematological features indicative of juvenile myelomonocytic leukaemia (JMML). The patient showed dysmorphic features: high forehead, bilateral epicanthal folds, long eyebrows, low nasal bridge and slightly low-set ears. A 38G>A (G13D) mutation in exon 1 of the NRAS gene was first demonstrated on peripheral blood cells, and then confirmed on granulocyte-macrophage colony-forming units.
View Article and Find Full Text PDFBackground: Donor/recipient mixed chimerism has been reported to be associated with an increased risk of graft failure in patients with beta-thalassemia given a bone marrow transplant. We investigated the relationship between the degree of mixed chimerism over time and clinical outcome of children undergoing cord blood transplantation for beta-thalassemia.
Design And Methods: Twenty-seven consecutive children given a cord blood transplant from a related donor were analyzed by short tandem repeat polymerase chain reaction and their chimerism results were compared with those of 79 consecutive patients who received a bone marrow transplant from either a relative (RD-BMT, n=42) or an unrelated donor (UD-BMT, n=37).