Background: In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L.
View Article and Find Full Text PDFReduction in oxygen levels is a key feature in the physiology of the bone marrow (BM) niche where hematopoiesis occurs. The BM niche is a highly vascularized tissue and endothelial cells (ECs) support and regulate blood cell formation from hematopoietic stem cells (HSCs). While in vivo studies are limited, ECs when cultured in vitro at low O (<5%), fail to support functional HSC maintenance due to oxidative environment.
View Article and Find Full Text PDFObjectives: Extracellular histone levels are associated with the severity of many human pathologies, including sepsis and COVID-19. This study aimed to investigate the role of extracellular histones on monocyte distribution width (MDW), and their effect on the release of cytokines by blood cells.
Methods: Peripheral venous blood was collected from healthy subjects and treated with different doses of a histone mixture (range 0-200 μg/mL) to analyze MDW modifications up-to 3 h and digital microscopy of blood smears.
The SARS-CoV-2 infection is characterized by both systemic and organ hyper-thromboinflammation, with a clinical course ranging from mild up-to critical systemic dysfunction and death. In patients with coronavirus disease 2019 (COVID-19) the monocyte/macrophage population is deeply involved as both trigger and target, assuming the value of useful diagnostic/prognostic marker of innate cellular immunity. Several studies correlated morphological and immunophenotypic alterations of circulating monocytes with clinical outcomes in COVID-19 patients, concluding that monocyte distribution width (MDW) may retain clinical value in stratifying the risk of disease worsening.
View Article and Find Full Text PDFObjective: Histone proteins are physiologically involved in DNA packaging and gene regulation but are extracellularly released by neutrophil/monocyte extracellular traps and mediate thrombo-inflammatory pathways, associated to the severity of many human pathologies, including bacterial/fungal sepsis and COVID-19. Prominent and promising laboratory features in classic and viral sepsis emphasize monocyte distribution width (MDW), due to its ability to distinguish and stratify patients at higher risk of critical conditions or death. No data are available on the roles of histones as MDW modifiers.
View Article and Find Full Text PDFThe infectious respiratory condition COVID-19 manifests a clinical course ranging from mild/moderate up-to critical systemic dysfunction and death linked to thromboinflammation. During COVID-19 infection, neutrophil extracellular traps participating in cytokine storm and coagulation dysfunction have emerged as diagnostic/prognostic markers. The characterization of NET identified that mainly histones, have the potential to initiate and propagate inflammatory storm and thrombosis, leading to increased disease severity and decreased patient survival.
View Article and Find Full Text PDFSeveral studies shed light on the interplay among inflammation, thrombosis, multi-organ failures and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Increasing levels of both free and/or circulating histones have been associated to coronavirus disease 2019 (COVID-19), enhancing the risk of heart attack and stroke with coagulopathy and systemic hyperinflammation. In this view, by considering both the biological and clinical rationale, circulating histones may be relevant as diagnostic biomarkers for stratifying COVID-19 patients at higher risk for viral sepsis, and as predictive laboratory medicine tool for targeted therapies.
View Article and Find Full Text PDFThromboangiitis obliterans (TAO) or Buerger's disease is a segmental inflammatory, thrombotic occlusive peripheral vascular disease with unknown aetiology that usually involves the medium and small-sized vessels of young male smokers. Due to its unknown aetiology and similarities with atherosclerosis and vasculitis, TAO diagnosis is still challenging. We aimed to review the status of biomolecular and laboratory para-clinical markers in TAO compared to atherosclerosis and vasculitis.
View Article and Find Full Text PDFVenous leg ulcers (VLUs) are one of the most common ulcers of the lower extremity. VLU affects many individuals worldwide, could pose a significant socioeconomic burden to the healthcare system, and has major psychological and physical impacts on the affected individual. VLU often occurs in association with post-thrombotic syndrome, advanced chronic venous disease, varicose veins, and venous hypertension.
View Article and Find Full Text PDFDiabetes mellitus is a heterogeneous and dysmetabolic chronic disease in which the laboratory plays a fundamental role, from diagnosis to monitoring therapy and studying complications. Early diagnosis and good glycemic control should start as early as possible to delay and prevent metabolic and cardio-vascular complications secondary to this disease. Glycated hemoglobin is currently used as the reference parameter.
View Article and Find Full Text PDFInt J Antimicrob Agents
October 2020
Despite early treatment with antimycobacterial combination therapy, drug resistance continues to emerge. Maintenance of redox homeostasis is essential for Mycobacterium avium (M. avium) survival and growth.
View Article and Find Full Text PDF(1) Background: Thromboangiitis obliterans or Winiwarter-Buerger disease (WBD), is an inflammatory, thrombotic occlusive, peripheral vascular disease, usually occurring in young smokers. The pathophysiological mechanisms underlying the disease are not clearly understood. The aim of this study is to investigate the imbalance between oxidants and antioxidants occurring in these patients.
View Article and Find Full Text PDFType 2 Diabetes Mellitus (T2DM) is associated with a high risk of atherosclerotic cardiovascular (CV) disease. Among the well-known pathophysiologic factors, crucial roles are played by endothelial dysfunction (caused by oxidative stress and inflammation hyperglycemia-linked), increased activity of nuclear factor kB, altered macrophage polarization, and reduced synthesis of resident endothelial progenitor cells. As consequence, a potentially rapid progression of the atherosclerotic disease with a higher propensity to unstable plaque is arguable, finally leading to significantly increased cardiovascular mortality.
View Article and Find Full Text PDFMatrix metalloprotease-2 and -9 (gelatinase A and B, respectively) are enzymes crucially involved in a plethora of physiopathological conditions. Gelatin zymography is considered one of the major qualitative/semiquantitative assays for simultaneously determining zymogenic, active, and complexed forms of gelatinases. Critical steps are represented by variations in sample collection methods, molecular weight standard calibrators, and different zymography assay protocols.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) are pleiotropic enzymes involved in extracellular protein degradation and turnover. MMPs are implicated in the pathogenesis of many neurological diseases, including multiple sclerosis (MS). To search the level of MMPs in the cerebrospinal fluid (CSF) of MS patients and detect possible disease-specific patterns.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2018
Objective: Electronegative LDL (LDL(-)) is involved in atherosclerosis through the activation of the TLR4/CD14 inflammatory pathway in monocytes. Matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitors of metalloproteinase [TIMP]) are also crucially involved in atherosclerosis, but their modulation by LDL(-) has never been investigated. The aim of this study was to examine the ability of LDL(-) to release MMPs and TIMPs in human monocytes and to determine whether sulodexide (SDX), a glycosaminoglycan-based drug, was able to affect their secretion.
View Article and Find Full Text PDFObjective/background: Unlike most systemic chronic diseases, chronic venous insufficiency (CVI) is ideal to study using endogenous biomarkers. The stimulus causing damage can be turned on and off with gravitational positioning and venous blood samples can be taken locally. Annexin V (apoptosis) and microparticles (cell membrane debris) were used as markers of cell destruction, with matrix metalloproteinases (MMPs) as markers of tissue remodelling.
View Article and Find Full Text PDFChronic venous disorders are common vascular pathology of great medical and socioeconomic impact, characterized by a wide spectrum of clinical manifestations occurring with symptoms and/or signs that vary in type and severity. The predominant pathophysiological mechanisms of chronic venous disease start from the development of venous hypertension from shear stress and reflux, leading to endothelial dysfunction and venous wall dilatation. The altered hemodynamic transduces physical signals into harmful bio-molecular pathways, creating a vicious cycle among shear stress, proteolytic remodeling, and inflammatory processes.
View Article and Find Full Text PDFMetalloproteinases (MMPs) are zinc-dependent endopeptidases that play essential roles as the mediator of matrix degradation and remodeling during organogenesis, wound healing and angiogenesis. Although MMPs were originally identified as matrixin proteases that act in the extracellular matrix, more recent research has identified members of the MMP family in unusual locations within the cells, exerting distinct functions in addition to their established role as extracellular proteases. During thrombopoiesis, megakaryocytes (Mks) sort MMPs to nascent platelets through pseudopodial-like structure known as proplatelets.
View Article and Find Full Text PDFVenous leg ulcer (VLU) is a huge healthcare problem with poorly understood pathophysiology. Transforming growth factor-β (TGF-β) and endoglin (Eng), are inflammatory and wound healing mediators. Eng, co-receptor for TGF-β type-II receptors, may be cleaved forming soluble Eng (sEng), antagonizing TGF-β signaling, a crucial process in vascular pathologies.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2016
Venous leg ulcers (VLUs) produce wound fluid (WF), as a result of inflammatory processes within the wound. It is unclear if WF from different healing phases of VLU has a peculiar biochemical profile and how VLU microenvironment affects the wound healing mechanisms. This study was conducted to evaluate the cytokine/chemokine profiles in WF from distinct VLU phases, in WF- and LPS-stimulated monocytes and treated with glycosaminoglycan Sulodexide, a therapeutic option for VLU healing.
View Article and Find Full Text PDF