The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined.
View Article and Find Full Text PDFDuring mRNA localization, RNA-binding proteins interact with specific structured mRNA localization motifs. Although several such motifs have been identified, we have limited structural information on how these interact with RNA-binding proteins. Staufen proteins bind structured mRNA motifs through dsRNA-binding domains (dsRBD) and are involved in mRNA localization in and mammals.
View Article and Find Full Text PDFAsymmetric localization of mRNAs is a widespread gene regulatory mechanism that is crucial for many cellular processes. The localization of a transcript involves multiple steps and requires several protein factors to mediate transport, anchoring and translational repression of the mRNA. Specific recognition of the localizing transcript is a key step that depends on linear or structured localization signals, which are bound by RNA-binding proteins.
View Article and Find Full Text PDFAnterior patterning in Drosophila is mediated by the localization of bicoid (bcd) mRNA at the anterior pole of the oocyte. Exuperantia (Exu) is a putative exonuclease (EXO) associated with bcd and required for its localization. We present the crystal structure of Exu, which reveals a dimeric assembly with each monomer consisting of a 3'-5' EXO-like domain and a sterile alpha motif (SAM)-like domain.
View Article and Find Full Text PDFImportin13 (Imp13) is a bidirectional karyopherin that can mediate both import and export of cargoes. Imp13 recognizes several import cargoes, which include the exon junction complex components Mago-Y14 and the E2 SUMO-conjugating enzyme Ubc9, and one known export cargo, the translation initiation factor 1A (eIF1A). To understand how Imp13 can perform double duty, we determined the 3.
View Article and Find Full Text PDFProteins of the GW182 family are essential components of the miRNA pathway in animal cells. Vertebrate genomes encode three GW182 paralogs (TNRC6A, TNRC6B, and TNRC6C), which may be functionally redundant. Here, we show that the N-terminal GW-repeat-containing regions of all three TNRC6s interact with the four human Argonaute proteins (AGO1-AGO4).
View Article and Find Full Text PDF