Nitric oxide ((.)NO) generated by the dissociation of S-nitrosoglutathione or added as gaseous solution, inhibits the oxidation of exogenous NADH supported by the activity of the cytosolic NADH/cyto-c electron transport pathway. The inhibition is immediate, very strong, higher at lower oxygen concentration, independent on the (.
View Article and Find Full Text PDFCytochrome c (cyto-c), added to isolated mitochondria, activates the oxidation of extramitochondrial NADH and the generation of a membrane potential, both linked to the activity of the cytosolic NADH/cyto-c electron transport pathway. The data presented in this article show that the protective effect of magnesium ions on the permeability of the mitochondrial outer membrane, supported by previously published data, correlates with the finding that, in hypotonic but not isotonic medium, magnesium promotes a differential effect on both the additional release of endogenous cyto-c and on the increased rate of NADH oxidation, depending on whether it is added before or after the mitochondria. At the same time, magnesium prevents or almost completely removes the binding of exogenously added cyto-c.
View Article and Find Full Text PDFThe data reported are fully consistent with the well-known observation that exogenous cytochrome c (cyto-c) molecules do not permeate through the outer membrane of mitochondria (MOM) incubated in isotonic medium (250 mM sucrose). Cyto-c is unable to accept electrons from the sulfite/cyto-c oxido-reductase (Sox) present in the intermembrane space, unless mitochondria are solubilized. Mitochondria incubated in a very high hypotonic medium (25 mM sucrose), in contrast to any expectation, continue to be not permeable to added cyto-c even if Sox and adenylate kinase are released into the medium.
View Article and Find Full Text PDF