is a chronic bacterial pathogen that thrives in several regions of the stomach, causing inflammation that can vary by site and result in distinct disease outcomes. Whether the regions differ in terms of host-derived metabolites is not known. We thus characterized the regional variation of the metabolomes of mouse gastric corpus and antrum organoids and tissue.
View Article and Find Full Text PDFThe rod-shaped Myxococcus xanthus cells move with defined front-rear polarity using polarized motility systems. A polarity module consisting of the small GTPase MglA, its cognate GTPase activating protein (GAP) MglB and RomR establishes this polarity. Agl-Glt gliding motility complexes assemble and disassemble at the leading and lagging pole, respectively.
View Article and Find Full Text PDFThe human pathogen Helicobacter pylori uses the host receptor αβ integrin to trigger inflammation in host cells via its cag pathogenicity island (cag PAI) type IV secretion system (T4SS). Here, we report that the H. pylori ImaA protein (HP0289) decreases the action of the cag PAI T4SS via tempering the bacterium's interaction with αβ integrin.
View Article and Find Full Text PDFUnlabelled: Gland colonization may be one crucial route for bacteria to maintain chronic gastrointestinal infection. We developed a quantitative gland isolation method to allow robust bacterial population analysis and applied it to the gastric pathobiont Helicobacter pylori After infections in the murine model system, H. pylori populations multiply both inside and outside glands in a manner that requires the bacteria to be motile and chemotactic.
View Article and Find Full Text PDFEnviron Microbiol
March 2016
Helicobacter pylori is a human-specific pathogen that chronically infects about 50% of the world's population. After travelling through the harsh environment of the stomach lumen, H. pylori colonizes the mucosal surface and within the glands of the human stomach.
View Article and Find Full Text PDFUnlabelled: In order to optimize interactions with their environment and one another, bacteria regulate their motility. In the case of the rod-shaped cells of Myxococcus xanthus, regulated motility is essential for social behaviors. M.
View Article and Find Full Text PDFAlmost 20 years ago, urea was described as a chemotaxis attractant for Helicobacter pylori. In this issue of Cell Host & Microbe, Huang et al. (2015) report that H.
View Article and Find Full Text PDFIn Myxococcus xanthus the gliding motility machinery is assembled at the leading cell pole to form focal adhesions, translocated rearward to propel the cell, and disassembled at the lagging pole. We show that MglA, a Ras-like small G-protein, is an integral part of this machinery. In this function, MglA stimulates the assembly of the motility complex by directly connecting it to the MreB actin cytoskeleton.
View Article and Find Full Text PDFBacteria engage in contact-dependent activities to coordinate cellular activities that aid their survival. Cells of Myxococcus xanthus move over surfaces by means of type IV pili and gliding motility. Upon direct contact, cells physically exchange outer membrane (OM) lipoproteins, and this transfer can rescue motility in mutants lacking lipoproteins required for motility.
View Article and Find Full Text PDFCell polarity in Myxococcus xanthus is crucial for the directed motility of individual cells. The polarity system is characterised by a dynamic spatio-temporal localisation of the regulatory proteins MglA and MglB at opposite cell poles. In response to signalling by the Frz chemosensory system, MglA and MglB are released from the poles and then rebind at the opposite poles.
View Article and Find Full Text PDFIn Escherichia coli the Min protein system plays an important role in positioning the division site. We show that this system also has an effect on timing of cell division. We do this in a quantitative way by measuring the cell division waiting time (defined as time difference between appearance of a division site and the division event) and the Z-ring existence time.
View Article and Find Full Text PDFBacteria are polarized with many proteins localizing dynamically to specific subcellular sites. Two GTPase families have important functions in the regulation of bacterial cell polarity, FlhF homologues and small GTPases of the Ras superfamily. The latter consist of only a G domain and are widespread in bacteria.
View Article and Find Full Text PDFThe extraction of fluorescence intensity profiles of single cells from image data is a common challenge in cell biology. The manual segmentation of cells, the extraction of cell orientation and finally the extraction of intensity profiles are time-consuming tasks. This article proposes a routine for the segmentation of single rod-shaped cells (i.
View Article and Find Full Text PDFHow cells establish and dynamically change polarity are general questions in cell biology. Cells of the rod-shaped bacterium Myxococcus xanthus move on surfaces with defined leading and lagging cell poles. Occasionally, cells undergo reversals, which correspond to an inversion of the leading-lagging pole polarity axis.
View Article and Find Full Text PDFThe bacterium Myxococcus xanthus uses a G protein cycle to dynamically regulate the leading/lagging pole polarity axis. The G protein MglA is regulated by its GTPase-activating protein (GAP) MglB, thus resembling Ras family proteins. Here, we show structurally and biochemically that MglA undergoes a dramatic, GDP-GTP-dependent conformational change involving a screw-type forward movement of the central β2-strand, never observed in any other G protein.
View Article and Find Full Text PDF