Publications by authors named "Daniela Grumme"

The aim of this study is to design a therapeutic enhanced three-dimensional (3D) silk fibroin (SF)-based scaffold containing propolis (Ps)-loaded chitosan (CH) nanocarriers. To this aim, we initially synthesized a hybrid gel-based ink by a synergistic sol-gel and self-assembly approach and then processed the resulting gels by microextrusion-based 3D printing followed by supercritical drying to obtain 3D hybrid aerogel scaffolds. Ps was utilized to enhance the final scaffold's bactericidal efficacy and cell responsiveness.

View Article and Find Full Text PDF

Biomaterial-mediated bone tissue engineering (BTE) offers an alternative, interesting approach for the restoration of damaged bone tissues in postsurgery osteosarcoma treatment. This study focused on synthesizing innovative composite inks, integrating self-assembled silk fibroin (SF), tannic acids (TA), and electrospun bioactive glass nanofibers 70SiO-25CaO-5PO (BGNF). By synergistically combining the unique characteristics of these three components through self-assembly and microextrusion-based three-dimensional (3D) printing, our goal was to produce durable and versatile aerogel-based 3D composite scaffolds.

View Article and Find Full Text PDF

Non-canonical autophagy pathways decorate single-membrane vesicles with Atg8-family proteins such as MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3). Phagosomes containing the bacterial pathogen (L.m.

View Article and Find Full Text PDF

Scaffold-mediated tissue engineering has become a golden solution for the regeneration of damaged bone tissues that lack self-regeneration capability. A successful scaffold in bone tissue engineering comprises a multitude of suitable biological, microarchitectural, and mechanical properties acting as different signaling cues for the cells to mediate the new tissue formation. Therefore, careful design of bioactive scaffold macro- and microstructures in multiple length scales and biophysical properties fulfilling the tissue repair demands are necessary yet challenging to achieve.

View Article and Find Full Text PDF

Although the crucial role of professional phagocytes for the clearance of infections is well-established, several studies indicate an adverse role of leukocytes in the dissemination of during infection. Since only little is known about macrophages in this context, we analyzed the role of macrophages, and in particular reactive oxygen species deficiency, for the seeding of metastases. Infection of bone marrow-derived macrophages (BMDM) with revealed that NADPH oxidase 2 (NOX2-) deficient, but not NOX1- or NOX4-deficient, BMDM failed to clear intracellular .

View Article and Find Full Text PDF

Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded.

View Article and Find Full Text PDF

Background: The progressive nature of Wallerian degeneration has long been controversial. Conflicting reports that distal stumps of injured axons degenerate anterogradely, retrogradely, or simultaneously are based on statistical observations at discontinuous locations within the nerve, without observing any single axon at two distant points. As axon degeneration is asynchronous, there are clear advantages to longitudinal studies of individual degenerating axons.

View Article and Find Full Text PDF

The slow Wallerian degeneration phenotype, Wld(S), which delays Wallerian degeneration and axon pathology for several weeks, has so far been studied only in mice. A rat model would have several advantages. First, rats model some human disorders better than mice.

View Article and Find Full Text PDF

Axonal dystrophy is the hallmark of axon pathology in many neurodegenerative disorders of the CNS, including Alzheimer's disease, Parkinson's disease and stroke. Axons can also form larger swellings, or spheroids, as in multiple sclerosis and traumatic brain injury. Some spheroids are terminal endbulbs of axon stumps, but swellings may also occur on unbroken axons and their role in axon loss remains uncertain.

View Article and Find Full Text PDF

We investigated the usefulness of YFP-H transgenic mice [Neuron 28 (2000) 41] which express yellow fluorescent protein (YFP) in a restricted subset of neurons to study Wallerian degeneration in the PNS. Quantification of YFP positive axons and myelin basic protein (MBP) immunocytochemistry revealed that YFP was randomly distributed to approximately 3% of myelinated motor and sensory fibres. Axotomy-induced Wallerian degeneration appeared as fragmentation of fluorescent signals in individual YFP positive axons with a morphology and timing similar to Wallerian degeneration observed by more traditional methods.

View Article and Find Full Text PDF