Publications by authors named "Daniela Glavan"

In many medical settings, medications are typically administered in the morning or evening, aligning with patients' daily routines. This practice does not stem from chronotherapy, which involves scheduling drug administration to enhance its effectiveness, but rather from the way clinical operations are structured. The timing of drug administration can significantly affect a medication's effectiveness and side effects, with the impact varying by up to ten times based on circadian rhythms.

View Article and Find Full Text PDF

Psychotropic drugs are vital in psychiatry, aiding in the management of mental health disorders. Their use requires an understanding of their pharmacological properties, therapeutic applications, and potential side effects. Ongoing research aims to improve their efficacy and safety.

View Article and Find Full Text PDF

Cerebrovascular diseases are the second leading cause of death worldwide. Despite significant research investment, the only available therapeutic options are mechanical thrombectomy and tissue plasminogen activator thrombolysis. None of the more than a thousand drugs tested on animal models have proven successful in human clinical trials.

View Article and Find Full Text PDF

Both classic epigenetic modifications and microRNAs can impact a range of bodily processes, from metabolism to brain function, and may contribute to the development of diseases such as cancer, cardiovascular disorders, and psychiatric disorders. Numerous studies suggest a connection between epigenetic changes and mood disorders. In this study, we performed a comprehensive search using PubMed and Google for the terms "epigenetics", "ageing", "miRNA", "schizophrenia", and "mood disorders" in the titles and abstracts of articles.

View Article and Find Full Text PDF
Article Synopsis
  • Major depressive disorder (MDD) and post-stroke depression (PSD) are two prevalent mental health issues, with MDD linked to disruptions in various neural pathways and influenced by multiple factors such as hormonal and genetic changes.
  • The biological mechanisms of MDD and PSD overlap, particularly in how stroke lesions can impact critical neurotransmitter pathways like serotonin and dopamine, leading to mood changes post-stroke.
  • While MDD often develops slowly and can lead to prolonged suffering, PSD typically arises quickly after a stroke but may resolve over time, despite being associated with higher mortality risks.
View Article and Find Full Text PDF

In the clinic, the death certificate is issued if brain electrical activity is no longer detectable. However, recent research has shown that in model organisms and humans, gene activity continues for at least 96 h postmortem. The discovery that many genes are still working up to 48 h after death questions our definition of death and has implications for organ transplants and forensics.

View Article and Find Full Text PDF

Glia cells are essential for brain functioning during development, aging and disease. However, the role of astroglia plays during brain development is quite different from the role played in the adult lesioned brain. Therefore, a deeper understanding of pathomechanisms underlying astroglia activity in the aging brain and cerebrovascular diseases is essential to guide the development of new therapeutic strategies.

View Article and Find Full Text PDF

Neurocognitive disorders are a group of disorders characterized by an impaired cognition which has not been present since birth or very early life and represents a decline from a previous attained level of functioning. The case we studied is M.E.

View Article and Find Full Text PDF
Article Synopsis
  • * The research involved 82 Romanian patients with MDD and 286 healthy controls, focusing on two genetic variants (NR3C1 rs41423247 and BDNF rs6265) using PCR techniques.
  • * Although the study found specific minor allele frequencies in the Romanian cohort, the genetic variants did not show significant associations with MDD, highlighting potential inconsistencies in previous literature and issues with the study’s sample size.
View Article and Find Full Text PDF

The major aim of stroke therapies is to stimulate brain repair and to improve behavioral recuperation after cerebral ischemia. Despite remarkable advances in cell therapy for stroke, stem cell-based tissue replacement has not been achieved yet stimulating the search for alternative strategies for brain self-repair using the neurogenic zones of the brain, the dentate gyrus and the subventricular zone (SVZ). However, during aging, the potential of the hippocampus and the SVZ to generate new neuronal precursors, declines.

View Article and Find Full Text PDF

It has long been suspected that the hypothalamic pituitary adrenal (HPA) axis plays a role in the pathophysiology of depression. Whether this association exists or not, and if it does, the degree of its significance, remain highly disputed. The issue is further complicated as no consensus currently exists on cortisol sampling timepoints or methods.

View Article and Find Full Text PDF

After cerebral ischemia, the ratio between astroglial cells and neurons in the neurovascular unit is disrupted in the perilesional area. We hypothesized that restoring the balance within the neurovascular unit may lead to an improved neurorestoration after focal ischemia. Recently, an innovative technology has been invented to efficiently convert proliferating astroglial cells into neurons in the injured young brain.

View Article and Find Full Text PDF

Following the failure of acute neuroprotection therapies, major efforts are currently made worldwide to promote neurological recovery and brain plasticity in the subacute and post-acute phases of stroke. Currently, there is hope that stroke recovery might be promoted by cell-based therapies. The field of stem cell therapy for cerebral ischemia has made significant progress in the last five years.

View Article and Find Full Text PDF

Despite the clinical significance of post-stroke angiogenesis, a detailed phenotypic analysis of pre-stroke vascular remodeling and post-stroke angiogenesis had not yet been done in a model of focal ischemia. In this study, using BrdU-labeling of proliferating cells and immunofluorescence of pre- and post-stroke rats, we found that, (i) BrdU administered before stroke was incorporated preferentially into the nuclei of endothelial cells lining the lumen of existing blood vessels and newly born neurons in the dentate gyrus but not in the subventricular zone or proliferating microglia, (ii) BrdU injection prior to stroke led to the patchy distribution of the newly incorporated endothelial cells into existing blood vessels of the adult rat brain, (iii) BrdU injection prior to stroke specifically labeled neuronal precursors cells in a region of soft tissue beyond the inhibitory scar, which seems to be permissive to regenerative events, (iv) BrdU injection after stroke led to labeling of endothelial cells crossing or detaching from the disintegrating blood vessels and their incorporation into new blood vessels in the stroke region, scar tissue and the region beyond, (v) BrdU injection after stroke led to specific incorporation of BrdU-positive nuclei into the "pinwheel" architecture of the ventricular epithelium, (vi) blood vessels in remote areas relative to the infarct core and in the contralateral non-lesioned cortex, showed co-labeled BrdU/RECA endothelial cells shortly after the BrdU injection, which strongly suggests a bone marrow origin of the endothelial cells. In the damaged cortex, a BrdU/prolyl 4-hydroxylase beta double labeling in the close proximity to collagen IV-labeled basement membrane, suggests that, in addition to bone marrow derived endothelial cells, the disintegrating vascular wall itself could also be a source of proliferating endothelial cells, (vii) By day 28 after stroke, new blood vessels were observed in the perilesional area and the scar tissue region, which is generally considered to be resistant to regenerative events.

View Article and Find Full Text PDF

Autophagy is a catabolic degradation system used to destroy and recycle the unnecessary or damaged components of a cell. Autophagy is present at a basal level in all mammals and is regulated by some conditions, such as oxidative stress, starvation or hypoxia. In aged tissues, increased but also decreased expression of autophagy-specific proteins, Beclin 1, LC3, Atg5 and Atg7 has been reported.

View Article and Find Full Text PDF