The oil industry is facing substantial environmental challenges, especially in managing waste streams such as Oilfield Produced Water (OPW), which represents a significant component of the industrial ecological footprint. Conventional treatment methods often fail to effectively remove dissolved oils and grease compounds, leading to operational difficulties and incomplete remediation. Electrochemical oxidation (EO) has emerged as a promising alternative due to its operational simplicity and ability to degrade pollutants directly and indirectly, which has already been applied in treating several effluents containing organic compounds.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2024
This study explores the utilization of adsorption and advanced oxidation processes for the degradation of ofloxacin (OFL) and ciprofloxacin (CIP) using a green functionalized carbon nanotube (MWCNT-OH/COOH-E) as adsorbent and catalyst material. The stability and catalytic activity of the solid material were proved by FT-IR and TG/DTG, which also helped to elucidate the reaction mechanisms. In adsorption kinetic studies, both antibiotics showed similar behavior, with an equilibrium at 30 min and 60% removal.
View Article and Find Full Text PDFThe demand for sustainable and low-cost materials for wastewater treatment is increasing considerably. In this scenario, geopolymers have gained great interest, due to their good mechanical properties, their ability to be produced from industrial waste and their adsorbent or catalytic properties. In this study, novel magnetic mining waste based-geopolymers were produced by incorporating a residue from phosphate waste rocks, which were extensively characterized (XRD, TGA/DTA, SEM, BET, XRF, FTIR, Mössbauer, ss-NMR and XPS).
View Article and Find Full Text PDFIn this study, plastic optical fibre (POF) was considered as a light-transmitting medium and substrate for use in a photocatalytic environmental purification system, using AgMoO and β-AgMoO/AgPO as photocatalysts. Pure AgMoO and a β-AgMoO/AgPO composite were synthesized using a facile precipitation method. The composition, structures and optical properties of as-prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FESEM), UV/Vis diffuse reflectance spectroscopy (UV/Vis DRS), BET surface area and TGA/DTG.
View Article and Find Full Text PDF