In olfactory sensory neurons (OSNs), cytosolic Ca(2+) controls the gain and sensitivity of olfactory signaling. Important components of the molecular machinery that orchestrates OSN Ca(2+) dynamics have been described, but key details are still missing. Here, we demonstrate a critical physiological role of mitochondrial Ca(2+) mobilization in mouse OSNs.
View Article and Find Full Text PDFIntimate bidirectional communication between Sertoli cells and developing germ cells ensures the integrity and efficiency of spermatogenesis. Yet, a conceptual mechanistic understanding of the physiological principles that underlie Sertoli cell autocrine and paracrine signalling is lacking. Here, we characterize a purinergic Ca(2+) signalling network in immature mouse Sertoli cells that consists of both P2X2 and P2Y2 purinoceptor subtypes, the endoplasmic reticulum and, notably, mitochondria.
View Article and Find Full Text PDFPredator-prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate behavioral response.
View Article and Find Full Text PDFMammals rely heavily on olfaction to interact adequately with each other and with their environment. They make use of seven-transmembrane G-protein-coupled receptors to identify odorants and pheromones. These receptors are present on dendrites of olfactory sensory neurons located in the main olfactory or vomeronasal sensory epithelia, and pertain to the odorant, trace amine-associated receptor and vomeronasal type 1 (ref.
View Article and Find Full Text PDFConspecific chemosensory communication controls a broad range of social and sexual behaviors. In most mammals, social chemosignals are predominantly detected by sensory neurons of a specialized olfactory subsystem, the vomeronasal organ (VNO). The behavioral relevance of social chemosignaling puts high demands on the accuracy and dynamic range of the underlying transduction mechanisms.
View Article and Find Full Text PDF