Fiber bundles are present in many tissues throughout the body. In most cases, collagen subunits spontaneously self-assemble into a fibrilar structure that provides ductility to bone and constitutes the basis of muscle contraction. Translating these natural architectural features into a biomimetic scaffold still remains a great challenge.
View Article and Find Full Text PDFGradients of physical and chemical cues are characteristic of specific tissue microenvironments and contribute toward morphogenesis and tissue regeneration upon injury. Recent advances on microfluidics and hydrogel manipulation raised the possibility of generating biomimetic biomaterials enriched with bioactive factors and encapsulating cells following designs specifically tailored for a target application. The novelty of this work relies on the combination of methacrylated gellan gum (MeGG) with platelet lysate (PL), aiming to generate novel advanced 3D PL-enriched photo-cross-linkable hydrogels and overcoming the lack of adhesion sites provided by the native MeGG hydrogels.
View Article and Find Full Text PDFChitosan (CHT) based polyelectrolyte complexes (PECs) have been receiving great attention for tissue engineering approaches. These hydrogels are held together by ionic forces and can be disrupted by changes in physiological conditions. In this study, we present a new class of CHT-based PEC hydrogels amenable to stabilization by chemical crosslinking.
View Article and Find Full Text PDFPolymeric beads have been used for protection and delivery of bioactive materials, such as drugs and cells, for different biomedical applications. Here, we present a generic two-phase system for the production of polymeric microbeads of gellan gum or alginate, based on a combination of in situ polymerization and phase separation. Polymer droplets, dispensed using a syringe pump, formed polymeric microbeads while passing through a hydrophobic phase.
View Article and Find Full Text PDFNative tissues present complex architectures at the micro- and nanoscale that dictate their biological function. Several microfabrication techniques have been employed for engineering polymeric surfaces that could replicate in vitro these micro- and nanofeatures. In this study, biomimetic surfaces of poly(butylene succinate) (PBS) were engineered by a micromolding technique.
View Article and Find Full Text PDFGellan Gum (GG) has been recently proposed for tissue engineering applications. GG hydrogels are produced by physical crosslinking methods induced by temperature variation or by the presence of divalent cations. However, physical crosslinking methods may yield hydrogels that become weaker in physiological conditions due to the exchange of divalent cations by monovalent ones.
View Article and Find Full Text PDFBlends of polycaprolactone (PCL) and chitosan (CHT) were prepared by casting from the mixture of solutions of both components in suitable solvents. PCL, and CHT, form phase separated blends with improved mechanical properties and increased water sorption ability with respect to pure PCL. The morphology of the system was investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal microscopy.
View Article and Find Full Text PDFChitosan blends with synthetic biodegradable polymers have been proposed for various biomedical applications due to their versatile mechanical properties and easier processing. However, details regarding the main surface characteristics that may benefit from the blending of these two types of materials are still missing. Hence, this work aims at investigating the surface properties of chitosan-based blends, illustrating the way these properties determine the material-proteins interactions and ultimately the behavior of osteoblast-like cells.
View Article and Find Full Text PDF