Publications by authors named "Daniela Ehgartner"

An important parameter in filamentous bioreactor cultivations is the morphology of the fungi, due to its interlink to productivity and its dependency on process conditions. Filamentous fungi show a large variety of morphological forms in submerged cultures. These range from dispersed hyphae, to interwoven mycelial aggregates, to denser hyphal aggregates, the so-called pellets.

View Article and Find Full Text PDF

We report on a label-free, noninvasive method for determination of spore inoculum quality of Penicillium chrysogenum prior to cultivation/germination. Raman microspectroscopy providing direct, molecule-specific information was used to extract information on the viability state of spores sampled directly from the spore inoculum. Based on the recorded Raman spectra, a supervised classification method was established for classification between living and dead spores and thus determining spore inoculum quality for optimized process control.

View Article and Find Full Text PDF

Production of recombinant proteins as inclusion bodies is an important strategy in the production of technical enzymes and biopharmaceutical products. So far, protein from inclusion bodies has been recovered from the cell factory through mechanical or chemical disruption methods, requiring additional cost-intensive unit operations. We describe a novel method that is using a bacteriophage-derived lysis protein to directly recover inclusion body protein from Escherichia coli from high cell density fermentation process: The recombinant inclusion body product is expressed by using a mixed feed fed-batch process which allows expression tuning via adjusting the specific uptake rate of the inducing substrate.

View Article and Find Full Text PDF

Spore inoculum quality in filamentous bioprocesses is a critical parameter associated with viable spore concentration (1) and spore germination (2). It influences pellet morphology and, consequently, process performance. The state-of-the-art method to measure viable spore concentration is tedious, associated with significant inherent bias, and not applicable in real-time.

View Article and Find Full Text PDF

Spore inoculum quality in filamentous bioprocesses is a critical parameter influencing pellet morphology and, consequently, process performance. It is essential to determine the concentration of viable spores before inoculation, to implement quality control and decrease batch-to-batch variability. The ability to assess the spore physiologic status with close-to-real time resolution would offer interesting perspectives enhanced process analytical technology (PAT) and quality by design (QbD) strategies.

View Article and Find Full Text PDF