Publications by authors named "Daniela Dimastrogiovanni"

Bacterial small RNAs (sRNAs) are key elements of regulatory networks that modulate gene expression. The sRNA RydC of Salmonella sp. and Escherichia coli is an example of this class of riboregulators.

View Article and Find Full Text PDF

The RNA degradosome is a multi-enzyme assembly that contributes to key processes of RNA metabolism, and it engages numerous partners in serving its varied functional roles. Small domains within the assembly recognize collectively a diverse range of macromolecules, including the core protein components, the cytoplasmic lipid membrane, mRNAs, non-coding regulatory RNAs and precursors of structured RNAs. We present evidence that the degradosome can form a stable complex with the 70S ribosome and polysomes, and we demonstrate the proximity in vivo of ribosomal proteins and the scaffold of the degradosome, RNase E.

View Article and Find Full Text PDF

Plasmodium falciparum is the vector of the most prevalent and deadly form of malaria, and, among the Plasmodium species, it is the one with the highest rate of drug resistance. At the basis of a rational drug design project there is the selection and characterization of suitable target(s). Thioredoxin reductase, the first protection against reactive oxygen species in the erythrocytic phase of the parasite, is essential for its survival.

View Article and Find Full Text PDF

Schistosomiasis is a widespread tropical parasitic disease, currently treated with Praziquantel, whose precise molecular target is actually unknown. Several other drugs are known to kill the schistosomes in vivo and in vitro, but these are seldom employed because of toxicity, high cost, complex administration or other reasons. The improvement of known drugs or the development of entirely new ones is a desirable goal, in view of the fact that strains of Schistosoma mansoni with reduced sensitivity to Praziquantel have appeared.

View Article and Find Full Text PDF

Schistosomiasis, the human parasitosis caused by various species of the blood-fluke Schistosoma, is a debilitating disease affecting 200 million people in tropical areas. The massive administration of the only effective drug, praziquantel, leads to the appearance of less sensitive parasite strains, thus, making urgent the search for new therapeutic approaches and new suitable targets. The thiol-mediated detoxification pathway has been identified as a promising target, being essential during all the parasite developmental stages and sufficiently different from the host counterpart.

View Article and Find Full Text PDF

Schistosomiasis is the second most widespread human parasitic disease. It is principally treated with one drug, praziquantel, that is administered to 100 million people each year; less sensitive strains of schistosomes are emerging. One of the most appealing drug targets against schistosomiasis is thioredoxin glutathione reductase (TGR).

View Article and Find Full Text PDF

Oxidative stress is a widespread challenge for living organisms, and especially so for parasitic ones, given the fact that their hosts can produce reactive oxygen species (ROS) as a mechanism of defense. Thus, long lived parasites, such as the flatworm Schistosomes, have evolved refined enzymatic systems capable of detoxifying ROS. Among these, glutathione peroxidases (Gpx) are a family of sulfur or selenium-dependent isozymes sharing the ability to reduce peroxides using the reducing equivalents provided by glutathione or possibly small proteins such as thioredoxin.

View Article and Find Full Text PDF

Schistosomiasis is a parasitic disease affecting over 200 million people currently treated with one drug, praziquantel. A possible drug target is the seleno-protein thioredoxin-glutathione reductase (TGR), a key enzyme in the pathway of the parasite for detoxification of reactive oxygen species. The enzyme is a unique fusion of a glutaredoxin domain with a thioredoxin reductase domain, which contains a selenocysteine (Sec) as the penultimate amino acid.

View Article and Find Full Text PDF

Thioredoxin glutathione reductase (TGR) is a key flavoenzyme expressed by schistosomes that bridges two detoxification pathways crucial for the parasite survival in the host's organism. In this article we report the crystal structure (at 2.2 A resolution) of TGR from Schistosoma mansoni (SmTGR), deleted in the last two residues.

View Article and Find Full Text PDF