With over 450 genes, solute carriers (SLCs) constitute the largest transporter superfamily responsible for the uptake and efflux of nutrients, metabolites, and xenobiotics in human cells. SLCs are associated with a wide variety of human diseases, including cancer, diabetes, and metabolic and neurological disorders. They represent an important therapeutic target class that remains only partly exploited as therapeutics that target SLCs are scarce.
View Article and Find Full Text PDFThe solute carrier transporter family 6 (SLC6) is of key interest for their critical role in the transport of small amino acids or amino acid-like molecules. Their dysfunction is strongly associated with human diseases such as including schizophrenia, depression, and Parkinson's disease. Linking single point mutations to disease may support insights into the structure-function relationship of these transporters.
View Article and Find Full Text PDFIn the past years the interest in Solute Carrier Transporters (SLC) has increased due to their potential as drug targets. At the same time, macrocycles demonstrated promising activities as therapeutic agents. However, the overall macrocycle/SLC-transporter interaction landscape has not been fully revealed yet.
View Article and Find Full Text PDFWikiPathways (wikipathways.org) is an open-source biological pathway database. Collaboration and open science are pivotal to the success of WikiPathways.
View Article and Find Full Text PDFWikiPathways (https://www.wikipathways.org) is a biological pathway database known for its collaborative nature and open science approaches.
View Article and Find Full Text PDFBackground: The KNIME platform offers several tools for the analysis of chem- and pharmacoinformatics data. Unless one has sufficient in-house data available for the analysis of interest, it is necessary to fetch third party data into KNIME. Many data sources offer valuable data, but including this data in a workflow is not always straightforward.
View Article and Find Full Text PDFOpen PHACTS is a pre-competitive project to answer scientific questions developed recently by the pharmaceutical industry. Having high quality biological interaction information in the Open PHACTS Discovery Platform is needed to answer multiple pathway related questions. To address this, updated WikiPathways data has been added to the platform.
View Article and Find Full Text PDFThe Open PHACTS Discovery Platform integrates several public databases, which can be of interest when annotating the results of a phenotypic screening campaign. Workflow tools provide easy-to-customize possibilities to access the platform. Here, we describe how to create such workflows for two different workflow tools (KNIME and Pipeline Pilot), including a protocol to annotate compounds (e.
View Article and Find Full Text PDFWikiPathways (wikipathways.org) captures the collective knowledge represented in biological pathways. By providing a database in a curated, machine readable way, omics data analysis and visualization is enabled.
View Article and Find Full Text PDFWith the public availability of large data sources such as ChEMBLdb and the Open PHACTS Discovery Platform, retrieval of data sets for certain protein targets of interest with consistent assay conditions is no longer a time consuming process. Especially the use of workflow engines such as KNIME or Pipeline Pilot allows complex queries and enables to simultaneously search for several targets. Data can then directly be used as input to various ligand- and structure-based studies.
View Article and Find Full Text PDFBackground: The human ATP binding cassette transporters Breast Cancer Resistance Protein (BCRP) and Multidrug Resistance Protein 1 (P-gp) are co-expressed in many tissues and barriers, especially at the blood-brain barrier and at the hepatocyte canalicular membrane. Understanding their interplay in affecting the pharmacokinetics of drugs is of prime interest. In silico tools to predict inhibition and substrate profiles towards BCRP and P-gp might serve as early filters in the drug discovery and development process.
View Article and Find Full Text PDFIntegration of open access, curated, high-quality information from multiple disciplines in the Life and Biomedical Sciences provides a holistic understanding of the domain. Additionally, the effective linking of diverse data sources can unearth hidden relationships and guide potential research strategies. However, given the lack of consistency between descriptors and identifiers used in different resources and the absence of a simple mechanism to link them, gathering and combining relevant, comprehensive information from diverse databases remains a challenge.
View Article and Find Full Text PDFModern data-driven drug discovery requires integrated resources to support decision-making and enable new discoveries. The Open PHACTS Discovery Platform (http://dev.openphacts.
View Article and Find Full Text PDFDrug Discov Today Technol
June 2014
There is strong evidence that ATP-binding cassette (ABC) transporters play a critical role in the pharmacokinetic and pharmacodynamic properties of many drugs and xenobiotics. Due to their pharmacological role, several computational approaches have been developed to understand and predict the interaction between ABC transporters and their ligands. Here, we provide an overview of the current state of the art of the ligand-based models that, derived from the transport and inhibitory activities of a set of ligands, have been published for ABC transporters.
View Article and Find Full Text PDFDrug Discov Today Technol
June 2014
Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions.
View Article and Find Full Text PDFSelf-organizing maps, which are unsupervised artificial neural networks, have become a very useful tool in a wide area of disciplines, including medicinal chemistry. Here, we will focus on two applications of self-organizing maps: the use of self-organizing maps for in silico screening and for clustering and visualisation of large datasets. Additionally, the importance of parameter selection is discussed and some modifications to the original algorithm are summarised.
View Article and Find Full Text PDF