The role of polyunsaturated fatty acid (PUFA) biosynthesis in acute myeloid leukemia (AML) remains largely undefined. A comparative expression analysis of 35 genes encoding fatty acid biosynthesis enzymes showed that fatty acid desaturase 1 (FADS1) was highly expressed across multiple AML subtypes relative to healthy controls and that elevated FADS1 expression correlates with worse overall AML patient survival. Functionally, shRNA-mediated inhibition of FADS1 reduced AML cell growth in vitro and significantly delayed leukemia onset in an AML mouse model.
View Article and Find Full Text PDFRepair of DNA damage is essential for the maintenance of genome stability and cell viability. DNA double strand breaks (DSBs) constitute a toxic class of DNA lesion and multiple cellular pathways exist to mediate their repair. Robust and titratable assays of cellular DSB repair (DSBR) are important to functionally interrogate the integrity and efficiency of these mechanisms in disease models as well as in response to genetic or pharmacological perturbations.
View Article and Find Full Text PDFThe SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability.
View Article and Find Full Text PDFMetabolic reprogramming is a common feature of many human cancers, including acute myeloid leukemia (AML). However, the upstream regulators that promote AML metabolic reprogramming and the benefits conferred to leukemia cells by these metabolic changes remain largely unknown. We report that the transcription factor ATF3 coordinates serine and nucleotide metabolism to maintain cell cycling, survival, and the differentiation blockade in AML.
View Article and Find Full Text PDFBRCA1 promotes the DNA end resection and RAD51 loading steps of homologous recombination (HR). Whether these functions can be uncoupled, and whether mutant proteins retaining partial activity can complement one another, is unclear and could affect the severity of BRCA1-associated Fanconi anemia (FA). Here we generated a Brca1 mouse with a coiled-coil (CC) domain deletion.
View Article and Find Full Text PDFWe present a flow cytometric approach for analyzing mitochondrial ROS in various live bone marrow (BM)-derived stem and progenitor cell populations from healthy mice as well as mice with AML driven by MLL-AF9. Specifically, we describe a two-step cell staining process, whereby healthy or leukemia BM cells are first stained with a fluorogenic dye that detects mitochondrial superoxides, followed by staining with fluorochrome-linked monoclonal antibodies that are used to distinguish various healthy and malignant hematopoietic progenitor populations. We also provide a strategy for acquiring and analyzing the samples by flow cytometry.
View Article and Find Full Text PDFBRCA1 functions in homologous recombination (HR) both up- and downstream of DNA end resection. However, in cells with 53BP1 gene knockout (KO), BRCA1 is dispensable for the initiation of resection, but whether BRCA1 activity is entirely redundant after end resection is unclear. Here, we found that 53bp1 KO rescued the embryonic viability of a Brca1 mouse model that harbors a stop codon in the coiled-coil domain.
View Article and Find Full Text PDFPARP1 is required for the maintenance of MLL-AF9 leukemias.PARP1 inhibitors enhance the therapeutic effect of cytotoxic drugs against MLL-AF9 leukemias.
View Article and Find Full Text PDFThe intracellular redox environment of acute myeloid leukemia (AML) cells is often highly oxidized compared to healthy hematopoietic progenitors and this is purported to contribute to disease pathogenesis. However, the redox regulators that allow AML cell survival in this oxidized environment remain largely unknown. Utilizing several chemical and genetically-encoded redox sensing probes across multiple human and mouse models of AML, we evaluated the role of the serine/threonine kinase PKC-epsilon (PKCε) in intracellular redox biology, cell survival and disease progression.
View Article and Find Full Text PDFQuiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase-mediated (DNA-PK-mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK-deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK-deficient quiescent leukemia cells and BRCA/DNA-PK-deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs.
View Article and Find Full Text PDFWe have studied the functional role of protein kinase Cε (PKCε) in the control of human CD4(+) T cell proliferation and in their response to TGF-1β. We demonstrate that PKCε sustains CD4(+) T cell proliferation triggered in vitro by CD3 stimulation. Transient knockdown of PKCε expression decreases IL-2R chain transcription, and consequently cell surface expression levels of CD25.
View Article and Find Full Text PDFSulfur is able to penetrate the skin, and a sulfur-rich balneotherapy has been suggested to be effective in the treatment of psoriasis. Psoriasis is now considered a genetically programmed, immune-mediated, inflammatory disease, in which intralesional T lymphocytes trigger keratinocytes to proliferate and perpetuate the disease process. Interleukin (IL)-17 and IL-22 produced by Th1/Th17 lymphocytes induce IL-8 secretion by keratinocytes, a key event in the pathogenesis of the disease.
View Article and Find Full Text PDFPKC isoenzymes play central roles in various cellular signalling pathways, participating in a variety of protein phosphorylation cascades that regulate/modulate cellular structure and gene expression. It has been firmly established that several isoforms of PKC have a role in the regulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) activity. Our interest in probing the role of the epsilon isoform of PKC in the colonic cell differentiation stems from the discovery that PKCε and TRAIL are involved in the differentiation of other cell types like hematopoietic stem cells.
View Article and Find Full Text PDF