Publications by authors named "Daniela Deponti"

Introduction: An innovative approach to the treatment of tendon injury or degeneration is given by engineered grafts, made available through the development of bioreactors that generate tendon tissue in vitro, by replicating in vivo conditions. This work aims at the design of a bioreactor capable of applying a stimulation of cyclic strain on cell constructs to promote the production of bioartificial tissue with mechanical and biochemical properties resembling those of the native tissue.

Methods: The system was actuated by an electromagnet and design specifications were imposed as follows.

View Article and Find Full Text PDF

An in-depth knowledge of the native meniscus morphology and biomechanics in its different areas is essential to develop an engineered tissue. Meniscus is characterized by a great regional variation in extracellular matrix components and in vascularization. Then, the aim of this work was to characterize the expression of factors involved in angiogenesis in different areas during meniscus maturation in pigs.

View Article and Find Full Text PDF

A novel three-dimensional bicomponent substitute made of collagen type I and hydroxyapatite was tested for the repair of osteochondral lesions in a swine model. This scaffold was assembled by a newly developed method that guarantees the strict integration between the organic and the inorganic parts, mimicking the biological tissue between the chondral and the osseous phase. Thirty-six osteochondral lesions were created in the trochlea of six pigs; in each pig, two lesions were treated with scaffolds seeded with autologous chondrocytes (cell+group), two lesions were treated with unseeded scaffolds (cell- group), and the two remaining lesions were left untreated (untreated group).

View Article and Find Full Text PDF

The meniscus plays important roles in knee function and mechanics and is characterized by a heterogeneous matrix composition. The changes in meniscus vascularization observed during growth suggest that the tissue-specific composition may be the result of a maturation process. This study has the aim to characterize the structural and biochemical variations that occur in the swine meniscus with age.

View Article and Find Full Text PDF

This study (i) developed a scaffold made of collagen I designed for hosting the autologous chondrocytes, (ii) focused on the optimization of chondrocytes seeding by the addition of the fibrin glue, and (iii) investigated the culture time for the ideal scaffold maturation in vitro. In the first part of the study, fresh chondrocytes were isolated from infant swine articular cartilage, and immediately seeded onto the collagen sponges either in medium or in fibrinogen in order to show the contribute of fibrin glue in cell seeding and survival into the scaffold. In the second part of the study, chondrocytes were first expanded in vitro and then resuspended in fibrinogen, seeded in collagen sponges, and cultured for 1, 3, and 5 weeks in order to identify the optimal time for the rescue of cell phenotype and for the scaffold maturation into a tissue with chondral properties.

View Article and Find Full Text PDF

The meniscus plays an important role in knee function and mechanics. Meniscal lesions, however, are common phenomena and this tissue is not able to achieve spontaneous successful repair, particularly in the inner avascular zone. Several animal models have been studied and proposed for testing different reparative approaches, as well as for studying regenerative methods aiming to restore the original shape and function of this structure.

View Article and Find Full Text PDF

In farm animals, oxidative stress can be involved in several intestinal pathological disorders, and many antioxidant molecules, especially those of plant origin, can counteract free radicals, thus stabilizing the gut environment and enhancing health. The aim of the study was to investigate whether the use of verbascoside (VB), a polyphenol plant compound, in pig feeding could modulate oxidative and/or nitrosative stress in the gut. Eighteen male piglets (Dalland) were assigned to two groups, which were fed with either a control diet (CON) or a diet supplemented with 5 mg/kg of verbascoside (VB) for 166 days.

View Article and Find Full Text PDF

One of the crucial points for a successful tissue-engineering approach for cartilage repair is represented by the level of in vitro maturation of the engineered tissue before implantation. The purpose of this work was to evaluate the effect of the level of in vitro maturation of engineered cartilaginous samples on the tissue quality after in vivo implantation. Samples were obtained from isolated swine articular chondrocytes embedded in fibrin glue.

View Article and Find Full Text PDF

Ghrelin is involved in many biological processes, ranging from appetite regulation and the release of growth hormone to the regulation of gastrointestinal motility and secretion processes. Ghrelin expression is not homogenously distributed throughout the gastrointestinal tract; expression is species-specific and can also depend on the animal age. This study was performed to investigate ghrelin immunolocalization in the gastrointestinal tract of pigs at different ages: 1 day (birth), 28 days (weaning), 2 months, 4 months, and 7 months (pre-puberty).

View Article and Find Full Text PDF

Regeneration of muscle fibers, lost during pathological muscle degeneration or after injuries, is mediated by the production of new myofibres. This process, sustained by the resident stem cells of the muscle, the satellite cells, is finely regulated by local cues, in particular by cytokines and growth factors. Evidence in the literature suggests that nerve growth factor (NGF) is involved in muscle fiber regeneration; however, its role and mechanism of action were unclear.

View Article and Find Full Text PDF

Regeneration of muscle fibers that are lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. An important cell type involved in muscle regeneration is the satellite cell. Necdin is a protein expressed in satellite cell-derived myogenic precursors during perinatal growth.

View Article and Find Full Text PDF

The mechanism of skeletal myoblast fusion is not well understood. We show that endogenous nitric oxide (NO) generation is required for myoblast fusion both in embryonic myoblasts and in satellite cells. The effect of NO is concentration and time dependent, being evident only at the onset of differentiation, and direct on the fusion process itself.

View Article and Find Full Text PDF