Advancing 3D in vitro human tissue models is crucial for biomedical research and drug development to address the ethical and biological limitations of animal testing. Recently, 3D skin models have proven to be effective for studying serious skin conditions, such as melanoma. For these advanced models to be applicable in preclinical studies, thorough characterization is essential to understand their applicability and limitations.
View Article and Find Full Text PDFIntrinsic and acquired resistance to mitogen-activated protein kinase inhibitors (MAPKi) in melanoma remains a major therapeutic challenge. Here, we show that the clinical development of resistance to MAPKi is associated with reduced tumor expression of the melanoma suppressor Autophagy and Beclin 1 Regulator 1 (AMBRA1) and that lower expression levels of AMBRA1 predict a poor response to MAPKi treatment. Functional analyses show that loss of AMBRA1 induces phenotype switching and orchestrates an extracellular signal-regulated kinase (ERK)-independent resistance mechanism by activating focal adhesion kinase 1 (FAK1).
View Article and Find Full Text PDFMouse tumour models are extensively used as a pre-clinical research tool in the field of oncology, playing an important role in anticancer drugs discovery. Accordingly, in cancer genomics research, the demand for next-generation sequencing (NGS) is increasing, and consequently, the need for data analysis pipelines is likewise growing. Most NGS data analysis solutions to date do not support mouse data or require highly specific configuration for their use.
View Article and Find Full Text PDFAMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too.
View Article and Find Full Text PDFDespite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment.
View Article and Find Full Text PDFBackground: Loss of Ambra1 (autophagy and beclin 1 regulator 1), a multifunctional scaffold protein, promotes the formation of nevi and contributes to several phases of melanoma development. The suppressive functions of Ambra1 in melanoma are mediated by negative regulation of cell proliferation and invasion; however, evidence suggests that loss of Ambra1 may also affect the melanoma microenvironment. Here, we investigate the possible impact of Ambra1 on antitumor immunity and response to immunotherapy.
View Article and Find Full Text PDFNitric oxide (NO) production in the tumor microenvironment is a common element in cancer. S-nitrosylation, the post-translational modification of cysteines by NO, is emerging as a key transduction mechanism sustaining tumorigenesis. However, most oncoproteins that are regulated by S-nitrosylation are still unknown.
View Article and Find Full Text PDFMelanoma is considered one of the deadliest skin cancers, partly because of acquired resistance to standard therapies. The most recognized driver of resistance relies on acquired melanoma cell plasticity, or the ability to dynamically switch among differentiation phenotypes. This confers the tumor noticeable advantages.
View Article and Find Full Text PDFImmune-checkpoint inhibitors (ICI) are highly effective in reinvigorating T cells to attack cancer. Nevertheless, a large subset of patients fails to benefit from ICI, partly due to lack of the cancer neoepitopes necessary to trigger an immune response. In this study, we used the thiopurine 6-thioguanine (6TG) to induce random mutations and thus increase the level of neoepitopes presented by tumor cells.
View Article and Find Full Text PDFCancer genomics and cancer mutation databases have made an available wealth of information about missense mutations found in cancer patient samples. Contextualizing by means of annotation and predicting the effect of amino acid change help identify which ones are more likely to have a pathogenic impact. Those can be validated by means of experimental approaches that assess the impact of protein mutations on the cellular functions or their tumorigenic potential.
View Article and Find Full Text PDFUnlabelled: Through genetically engineered mouse models of melanoma, we identified Autophagy/beclin 1 regulator 1 (Ambra1) as novel tumor-suppressor in melanoma. In these settings, loss of associated with the hyperactivation of focal adhesion kinase 1 (Fak1) signaling, the inhibition of which resulted in reduced tumor growth and invasiveness. We therefore propose FAK1 inhibition for current melanoma therapy in AMBRA1-low tumors.
View Article and Find Full Text PDFAMBRA1 (autophagy/beclin 1 regulator 1) is a multifunctional scaffold protein involved in several cellular processes spanning from cell proliferation to apoptosis and to regulation of macroautophagy/autophagy. Our recent publication revealed that has an antitumorigenic role in melanoma, the most aggressive and deadly skin cancer. We have indeed collected data indicating that the increased proliferative and invasive/metastatic features that we observed in -ablated melanomas are related to a remarkable regulation by on cellular processes which are beyond autophagy.
View Article and Find Full Text PDFMelanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development.
View Article and Find Full Text PDFMammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability.
View Article and Find Full Text PDFAutophagy
January 2021
Atherosclerosis is a progressive vascular disease representing the primary cause of morbidity and mortality in developed countries. Formerly, atherosclerosis was considered as a mere passive accumulation of lipids in blood vessels. However, it is now clear that atherosclerosis is a complex and multifactorial disease, in which the involvement of immune cells and inflammation play a key role.
View Article and Find Full Text PDFThe downregulation of the denitrosylating enzyme S-nitrosoglutathione reductase (GSNOR, EC:1.1.1.
View Article and Find Full Text PDFDespite tremendous efforts in the last decade to improve treatments, melanoma still represents a major therapeutic challenge and overall survival of patients remains poor. Therefore, identifying new targets to counteract melanoma is needed. In this scenario, autophagy, the "self-eating" process of the cell, has recently arisen as new potential candidate in melanoma.
View Article and Find Full Text PDFThe centrosome is the master orchestrator of mitotic spindle formation and chromosome segregation in animal cells. Centrosome abnormalities are frequently observed in cancer, but little is known of their origin and about pathways affecting centrosome homeostasis. Here we show that autophagy preserves centrosome organization and stability through selective turnover of centriolar satellite components, a process we termed doryphagy.
View Article and Find Full Text PDF-nitrosylation, a prototypic redox-based posttranslational modification, is frequently dysregulated in disease. -nitrosoglutathione reductase (GSNOR) regulates protein -nitrosylation by functioning as a protein denitrosylase. Deficiency of GSNOR results in tumorigenesis and disrupts cellular homeostasis broadly, including metabolic, cardiovascular, and immune function.
View Article and Find Full Text PDFAutophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection.
View Article and Find Full Text PDFS-nitrosoglutathione reductase (GSNOR) represents the best-documented denitrosylase implicated in regulating the levels of proteins posttranslationally modified by nitric oxide on cysteine residues by S-nitrosylation. GSNOR controls a diverse array of physiologic functions, including cellular growth and differentiation, inflammation, and metabolism. Chromosomal deletion of GSNOR results in pathologic protein S-nitrosylation that is implicated in human hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFApaf1 has been studied hitherto for its key role in regulating the formation of the apoptotic core machinery, the apoptosome, to induce programmed cell death. Apaf1 involvement in orchestrating this process during embryonic development has been widely documented and constitutes a breakthrough in developmental biology. In this review, we aim to highlight the origin of Apaf1 discoveries and how findings, mainly based on the analysis of knock-out mouse models, have led us to consider Apaf1 as a master player in fine-tuning apoptosis during embryonic development.
View Article and Find Full Text PDFThe activating molecule in Beclin-1-regulated autophagy (Ambra1), also known as autophagy/Beclin-1 regulator 1, is a highly intrinsically disordered and vertebrate-conserved adapter protein that is part of the autophagy signaling network. It acts in an early step of mammalian target of rapamycin complex 1 (mTORC1)-dependent autophagy by favouring formation of the autophagosome core complex. However, recent studies have revealed that Ambra1 can also coordinate a cell response upon starvation or other stresses that involve translocation of the autophagosome core complex to the endoplasmic reticulum (ER), regulative ubiquitylation and stabilization of the kinase ULK1, selective mitochondria removal and cell cycle downregulation.
View Article and Find Full Text PDF