The iron storage protein bacterioferritin (Bfr) binds up to 12 hemes at specific sites in its protein shell. The heme can be substituted with the photosensitizer Zn(II)-protoporphyrin IX (ZnPP), and photosensitized reductive iron release from the ferric oxyhydroxide {[FeO(OH)]} core inside the ZnPP-Bfr protein shell was demonstrated [Cioloboc, D., et al.
View Article and Find Full Text PDFJ Biol Inorg Chem
May 2020
Nanoformulations, prodrugs, and targeted therapies are among the most intensively investigated approaches to new cancer therapeutics. Human ferritin has been used extensively as a nanocarrier for the delivery of drugs and imaging agents to cancerous tumor cells both in vitro and in vivo. We report exploitation of the native properties of ferritin, which can be co-loaded with simple forms of iron (FeOOH) and arsenic (arsenate) in place of the native phosphate.
View Article and Find Full Text PDFSulfite oxidase is a mononuclear molybdenum enzyme that oxidises sulfite to sulfate in many organisms, including man. Three different reaction mechanisms have been suggested, based on experimental and computational studies. Here, we study all three with combined quantum mechanical (QM) and molecular mechanical (QM/MM) methods, including calculations with large basis sets, very large QM regions (803 atoms) and QM/MM free-energy perturbations.
View Article and Find Full Text PDFTraditional photodynamic therapy for cancer relies on dye-photosensitized generation of singlet oxygen. However, therapeutically effective singlet oxygen generation requires well-oxygenated tissues, whereas many tumor environments tend to be hypoxic. We describe a platform for targeted enhancement of photodynamic therapy that produces singlet oxygen in oxygenated environments and hydroxyl radical, which is typically regarded as the most toxic reactive oxygen species, in hypoxic environments.
View Article and Find Full Text PDFThe putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT).
View Article and Find Full Text PDFThe nitrite adducts of globins can potentially bind via O- or N- linkage to the heme iron. We have used EPR (electron paramagnetic resonance) and DFT (density functional theory) to explore these binding modes to myoglobin and hemoglobin. We demonstrate that the nitrite adducts of both globins have detectable EPR signals; we provide an explanation for the difficulty in detecting these EPR features, based on uniaxial state considerations.
View Article and Find Full Text PDFWe have estimated free energies for the binding of nine cyclic carboxylate guest molecules to the octa-acid host in the SAMPL4 blind-test challenge with four different approaches. First, we used standard free-energy perturbation calculations of relative binding affinities, performed at the molecular-mechanics (MM) level with TIP3P waters, the GAFF force field, and two different sets of charges for the host and the guest, obtained either with the restrained electrostatic potential or AM1-BCC methods. Both charge sets give good and nearly identical results, with a mean absolute deviation (MAD) of 4 kJ/mol and a correlation coefficient (R (2)) of 0.
View Article and Find Full Text PDFIt is generally accepted that the catalytic cycles of superoxide reductases (SORs) and cytochromes P450 involve a ferric hydroperoxo intermediate at a mononuclear iron center with a coordination sphere consisting of four equatorial nitrogen ligands and one axial cysteine thiolate trans to the hydroperoxide. However, although SORs and P450s have similar intermediates, SORs selectively cleave the Fe-O bond and liberate peroxide, whereas P450s cleave the O-O bond to yield a high-valent iron center. This difference has attracted the interest of researchers, and is further explored here.
View Article and Find Full Text PDFArtif Cells Blood Substit Immobil Biotechnol
October 2011
We have previously reported that derivatization of hemoglobin with periodate-modified sugar derivatives such as oxidized adenosine triphosphate (oATP) leads to an increase in prooxidant reactivity at the heme. Here, we report that copolymerization of hemoglobin with serum albumin alleviates this problem completely, to the extent where the copolymer even has a slightly lower autooxidation rate compared to native hemoglobin. A similar, although not as potent, effect is obtained when hemoglobin is derivatized with oATP in the presence of small-molecule antioxidants instead of albumin.
View Article and Find Full Text PDF