Publications by authors named "Daniela Chmelova"

This review aims to provide a comprehensive overview of the application of bacterial and fungal laccases for the removal of pharmaceuticals from the environment. Laccases were evaluated for their efficacy in degrading pharmaceutical substances across various categories, including analgesics, antibiotics, antiepileptics, antirheumatic drugs, cytostatics, hormones, anxiolytics, and sympatholytics. The capability of laccases to degrade or biotransform these drugs was found to be dependent on their structural characteristics.

View Article and Find Full Text PDF

The viral genome of the SARS-CoV-2 coronavirus, the aetiologic agent of COVID-19, encodes structural, non-structural, and accessory proteins. Most of these components undergo rapid genetic variations, though to a lesser extent the essential viral proteases. Consequently, the protease and/or deubiquitinase activities of the cysteine proteases M and PL became attractive targets for the design of antiviral agents.

View Article and Find Full Text PDF

Neuraminidase (NA), as an important protein of influenza virus, represents a promising target for the development of new antiviral agents for the treatment and prevention of influenza A and B. Bacterial host strain BL21 (DE3)pLysS containing the NA gene of the H1N1 influenza virus produced this overexpressed enzyme in the insoluble fraction of cells in the form of inclusion bodies. The aim of this work was to investigate the effect of independent variables (propagation time, isopropyl -d-1-thiogalactopyranoside (IPTG) concentration and expression time) on NA accumulation in inclusion bodies and to optimize these conditions by response surface methodology (RSM).

View Article and Find Full Text PDF

Microorganisms and plants can be important sources of many compounds with potential pharmaceutical applications. Extraction of these matrices is one of the ways of identifying the presence of inhibitory active substances against enzymes whose high activity leads to serious human diseases including cancer, Parkinson's or Crohn's diseases. The isolation and purification of inhibitors are time-consuming and expensive steps in the analysis of the crude extract and therefore, it is necessary to find a fast, efficient, and inexpensive method for screening extracts of interest.

View Article and Find Full Text PDF

Neuraminidase (NA) is one of the targets for the development of new antivirals against the influenza virus. The recombinant Escherichia coli cells, namely the strains BL21(DE3)pLysS and ArcticExpress(DE3) were used to produce the influenza virus neuraminidase. Although the different conditions of induction were tested, the accumulation of over-expressed NA in insoluble fraction occurred independently of these conditions.

View Article and Find Full Text PDF

Spruce bark represents a reservoir of bioactive compounds. The aim of this study was to investigate the effect of independent variables (temperature, liquid to solid ratio, time and methanol content) and their interaction within the extraction process by the response surface methodology (RSM). The effect of conventional (solvent extraction; SE) and modern (ultrasound-assisted extraction; UAE) methods for the extraction of antioxidants (antioxidant capacity; AC) and polyphenols (total polyphenol content; TPC) was compared.

View Article and Find Full Text PDF

TLC-Bioautography is a fast and effective method for assessing the inhibitory effect of compounds present in plant extracts against microbial species. However, this method has a hidden, currently underutilized potential for evaluating the presence of inhibitory compounds against selected enzymes. The aim of this work was to design a functional TLC-Bioautography method for the evaluation of protease inhibitors present in plant extracts.

View Article and Find Full Text PDF

Sialidases are enzymes essential for numerous organisms including humans. Hydrolytic sialidases (EC 3.2.

View Article and Find Full Text PDF

The decolourization and detoxification of azo dyes (Orange 2, Acid Orange 6) by fungal laccase from Trametes versicolor were evaluated. For laccase catalysed reaction, the azonaphthol Orange 2, with 72.8% decolourization, was degraded more rapidly than the azobenzene Acid Orange 6, with 45.

View Article and Find Full Text PDF

Laccases of white-rot fungi provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. The aim of this study was production, characterization, and application of laccases from the white-rot fungus Ceriporiopsis subvermispora ATCC 90467 for decolorization of triphenylmethane dyes that could remain persistent in wastewater. Laccase was purified from a C.

View Article and Find Full Text PDF