Publications by authors named "Daniela Bufano"

In this case report we studied alterations in mitochondrial proteins in a patient suffering from recurrent profound muscle weakness, associated with ethylmalonic-adipic aciduria, who had benefited from high dose of riboflavin treatment. Morphological and biochemical alterations included muscle lipid accumulation, low muscle carnitine content, reduction in fatty acid beta-oxidation and reduced activity of complexes I and II of the respiratory chain. Riboflavin therapy partially or totally reversed these symptoms and increased the level of muscle flavin adenine dinucleotide, suggesting that aberrant flavin cofactor metabolism accounted for the disease.

View Article and Find Full Text PDF

Dimethylglycine dehydrogenase (Me(2)GlyDH) is a mitochondrial enzyme that catalyzes the oxidative demethylation of dimethylglycine to sarcosine. The enzyme requires flavin adenine dinucleotide (FAD), which is covalently bound to the apoprotein via a histidyl(N3)-(8alpha)FAD linkage. In the present study, the mature form of rat Me(2)GlyDH has been over-expressed in Escherichia coli as an N-terminally 6-His-tagged fusion protein.

View Article and Find Full Text PDF

Riboflavin-responsive, multiple acylcoenzyme A dehydrogenase deficiency (RR-MAD), a lipid storage myopathy, is characterized by, among others, a decrease in fatty acid (FA) beta-oxidation capacity. Muscle uncoupling protein 3 (UCP3) is up-regulated under conditions that either increase the levels of circulating free FA and/or decrease FA beta-oxidation. Using a relatively large cohort of seven RR-MAD patients, we aimed to better characterize the metabolic disturbances of this disease and to explore the possibility that it might increase UCP3 expression.

View Article and Find Full Text PDF

We have studied the functional steps by which Saccharomyces cerevisiae mitochondria can synthesize FAD from cytosolic riboflavin (Rf). Riboflavin uptake into mitochondria took place via a mechanism that is consistent with the existence of (at least two) carrier systems. FAD was synthesized inside mitochondria by a mitochondrial FAD synthetase (EC 2.

View Article and Find Full Text PDF