Hydrochar is a new carbonaceous product obtained via hydrothermal carbonization of wet biomass, such as sludges or digested sludges, which often have disposal problems, also due to the presence of contaminants such as heavy metals. The properties of the hydrochar led to an interest in using it as an amendment, but the agro-environmental properties must be considered for its safe use. Raw hydrochar produced by agro-industrial digestate and relative three acidic post-treated hydrochars (for heavy metals removal) have been assessed considering their effect on phytotoxicity, soil, plant growth, mutagenicity, and genotoxicity.
View Article and Find Full Text PDFIn this study, hydrochar (HC), a carbon-rich product originated from hydrothermal conversion treatment (HTC), was obtained from wastes of the wine and dairy industries. The effect of mixing secondary char and compost was tested, before and after the aerobic mixing of compost (COM) and HC at increasing doses (from 15 to 75 Mg ha DM), in an effort to lower the HC phytotoxicity due to potential phytotoxic compounds of secondary char. The results indicated that, after the aerobic stabilization, the mix HC/COM was able to double the plant growth in comparison to COM alone.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2022
In intensive fruit growing systems, the recovery and maintenance of soil fertility play a crucial role in both environmental protection and sustainable support to plant productivity. The circular economy approach adopted at the EU level strongly promotes the use of organic products instead of mineral fertilizers. This work focuses on two different soil improvers, compost from the organic fraction of municipal solid waste digestate (CO) and "matured" manure, produced after a fast and controlled aerobic treatment in an aerated pile (MM), which were applied in three apple orchards with different soil tillage.
View Article and Find Full Text PDFThe work concerns the study of the hydrochar from digestate and hydrochar co-compost characterization as amendments. The processes for hydrochar and co-compost production were described in Part 1 of this work (Scrinzi et al., 2022).
View Article and Find Full Text PDFThe best available technique (BAT) for managing the organic fraction of municipal solid waste (OFMSW) is represented by anaerobic digestion (AD) and subsequent composting. This research explored a new industrial model in the framework of the C2Land international project, with the insertion of hydrothermal carbonization (HTC) as a post-treatment for OFMSW digestate. The reaction was set for 3 h at three different temperatures (180 ÷ 220 °C); the wet solid hydrochar obtained after filtration was then co-composted with greenery waste as a bulking agent and untreated OFMSW digestate in four different proportions in bench-scale bioreactors.
View Article and Find Full Text PDFThis study presents the results of semi-pilot scale anaerobic digestion tests conducted under dry thermophilic conditions with the addition of biochar (6% on fresh mass basis of inoculum), derived from an industrial gasification plant, for determining biogas and biomethane production from organic fraction of municipal solid waste. By using two types of inocula (from a full-scale dry anaerobic digestion plant and from lab-scale biomethanation tests), the obtained experimental results did not show significant increase in methane yield related to the presence of biochar (330.40 NL CH kgVS using plant inoculum; 335.
View Article and Find Full Text PDF