Alpha-synuclein (α-Syn) is a soluble protein primarily expressed in presynaptic terminals in the central nervous system (CNS). Aggregates of fibrillated α-Syn are the major component of Lewy bodies (LB), a pathologic hallmark of idiopathic Parkinson's disease (PD). Recently, naturally occurring autoantibodies against human α-Syn (nAbs α-Syn) were detected in the peripheral blood of PD patients and controls.
View Article and Find Full Text PDFThe extracellular signal regulated kinases ERK1/2 play important roles in the regulation of diverse cellular functions and have been implicated in several human diseases. In addition to the fully activated, diphosphorylated ERK1/2 protein, monophosphorylated forms of ERK1/2 have been observed, which may have distinct biological functions. We report here on the highly sensitive detection and differentiation of unphosphorylated, threonine-phosphorylated (pT), tyrosine-phosphorylated (pY) and diphosphorylated ERK1 and ERK2 by capillary isoelectric focusing followed by immunological detection (CIEF-immunoassay).
View Article and Find Full Text PDFGenetic and environmental factors mediate via different physiological and molecular processes a shifted energy balance leading to overweight and obesity. To get insights into the underlying processes involved in energy intake and weight gain, we compared hypothalamic tissue of mice kept on a high-fat or control diet for 10 days by a proteomic approach. Using two-dimensional difference gel electrophoresis in combination with LC-MS/MS, we observed significant abundance changes in 15 protein spots.
View Article and Find Full Text PDFObjective: Biomarkers are required for the diagnosis and monitoring of disease progression in Parkinson disease (PD). To date, most studies have concentrated on α-synuclein (α-Syn), a protein involved in Parkinson disease pathogenesis, as a potential biomarker, with inconsistent outcomes. Recently, naturally occurring autoantibodies against α-Syn (α-Syn-nAbs) have been detected in the serum of patients with PD.
View Article and Find Full Text PDFParkinson's disease and other neurodegenerative disorders share a common pathologic pathway with aggregation and deposition of misfolded proteins causing a disruption of particular neuronal networks. Several mechanisms have been implicated in the downstream events following deposition of misfolded proteins including free radical formation and failure of cellular defences such as autophagy or protein-degradation by the ubiquitin-proteasome pathway among many others. Treatments, however, capable of arresting or at least effectively modifying the course of disease do not yet exist.
View Article and Find Full Text PDF