Publications by authors named "Daniela Battista"

Their tunable electrical, optical, and mechanical properties make freestanding membranes of organically cross-linked gold nanoparticles (GNPs) interesting materials for applications in micro- and nanoelectromechanical systems. Here, we demonstrate the application of α,ω-alkanedithiol-cross-linked GNP membranes as electrostatically driven actuators. The devices were fabricated by depositing these membranes (thickness 29-45 nm) onto cylindrical cavities (diameter ∼200 μm; depth ∼8-15 μm), which were lithographically patterned in a SU-8 resist.

View Article and Find Full Text PDF

There has been considerable progress in obtaining engraftable embryonic stem (ES) cell-derived midbrain dopamine neurons for cell replacement therapy in models of Parkinson's disease; however, limited integration and striatal reinnervation of ES-derived grafts remain a major challenge for future clinical translation. In this paper, we show that enhanced expression of polysialic acid results in improved graft efficiency in correcting behavioral deficits in Parkinsonian mice. This result is accompanied by two potentially relevant cellular changes: greater survival of transplanted ES-derived dopamine neurons and robust sprouting of tyrosine hydroxylase-positive processes into host tissue.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) represent a promising source of midbrain dopaminergic (DA) neurons for applications in Parkinson disease. However, ESC-based transplantation paradigms carry a risk of introducing inappropriate or tumorigenic cells. Cell purification before transplantation may alleviate these concerns and enable identification of the specific DA neuron stage most suitable for cell therapy.

View Article and Find Full Text PDF

Cells generated in the subventricular zone give rise to neuroblasts that migrate to the olfactory bulb (OB) along the rostral migratory stream (RMS). The polysialylated form of neural cell adhesion molecule (PSA-NCAM) is expressed by these cells, and has been shown to both promote their migration and suppress differentiation induced by NCAM. In the present study, enzymatic removal of PSA from these neuroblasts using PSA-specific endoneuraminidase has been found not only to disrupt the tangential migration and cellular organization of the RMS, but also to cause a massive dispersion of BrdU (5-bromo-2'-deoxyuridine)-labeled neuroblasts into surrounding brain regions, including cortex and striatum.

View Article and Find Full Text PDF

The differentiation of neural stem cells toward a neuronal phenotype is determined by the extracellular and intracellular factors that form the neurogenic niche. In this review, we discuss the available data on the functional role of inflammation and in particular, pro- and anti-inflammatory cytokines, on neuronal differentiation from endogenous and transplanted neural stem/progenitor cells. In addition, we discuss the role of microglial cell activation on these processes and the fact that microglial cell activation is not univocally associated with a pro-inflammatory milieu.

View Article and Find Full Text PDF

Adult neural stem cells (NSC) proliferate and differentiate depending on the composition of the cellular and molecular niche in which they are immersed. Until recently, microglial cells have been ignored as part of the neurogenic niche. We studied the dynamics of NSC proliferation and differentiation in the dentate gyrus of the hippocampus (DG) and characterized the changes of the neurogenic niche in adrenalectomized animals (ADX).

View Article and Find Full Text PDF