Publications by authors named "Daniela ASSmann"

Article Synopsis
  • Fungal pathogens, particularly smut fungi, use specialized molecules called effectors for infection, with smut fungi having smaller genomes and secretomes compared to other plant pathogens.
  • A study analyzed the secretomes of 11 Ustilaginaceae species, identifying 53 core effector protein groups conserved in this family.
  • Testing revealed that 20 out of 53 mutant strains lacking specific effectors showed reduced virulence, leading to the identification of seven new core effectors that contribute to pathogenicity.
View Article and Find Full Text PDF

The easyPACId (easy Promoter Activation and Compound Identification) approach is focused on the targeted activation of natural product biosynthetic gene clusters (BGCs) encoding non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), NRPS-PKS hybrids, or other BGC classes. It was applied to entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus by exchanging the natural promoter of desired BGCs against the L-arabinose inducible PBAD promoter in ∆hfq mutants of the respective strains. The crude (culture) extracts of the cultivated easyPACId mutants are enriched with the single compound or compound class and can be tested directly against various target organisms without further purification of the produced natural products.

View Article and Find Full Text PDF

Plant pathogenic fungi colonizing living plant tissue secrete a cocktail of effector proteins to suppress plant immunity and reprogramme host cells. Although many of these effectors function inside host cells, delivery systems used by pathogenic bacteria to translocate effectors into host cells have not been detected in fungi. Here, we show that five unrelated effectors and two membrane proteins from Ustilago maydis, a biotrophic fungus causing smut disease in corn, form a stable protein complex.

View Article and Find Full Text PDF

The success of plant-pathogenic fungi mostly relies on their arsenal of virulence factors which are expressed and delivered into the host tissue during colonization. The biotrophic fungal pathogen Ustilago hordei causes covered smut disease on both barley and oat. In this study, we combined cytological, genomics and molecular biological methods to achieve a better understanding of the molecular interactions in the U.

View Article and Find Full Text PDF

The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U.

View Article and Find Full Text PDF

The basidiomycete Ustilago maydis causes smut disease in maize, with large plant tumors being formed as the most prominent disease symptoms. During all steps of infection, U. maydis depends on a biotrophic interaction, which requires an efficient suppression of plant immunity.

View Article and Find Full Text PDF

Ustilago maydis is a biotrophic fungal pathogen that colonizes living tissue of its host plant maize. Based on transcriptional upregulation during biotrophic development we identified the pit (proteins important for tumours) cluster, a novel gene cluster comprising four genes of which two are predicted to encode secreted effectors. Disruption of the gene cluster abolishes U.

View Article and Find Full Text PDF

The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue.

View Article and Find Full Text PDF

Fungal chitin synthases (CHSs) form fibers of the cell wall and are crucial for substrate invasion and pathogenicity. Filamentous fungi contain up to 10 CHSs, which might reflect redundant functions or the complex biology of these fungi. Here, we investigate the complete repertoire of eight CHSs in the dimorphic plant pathogen Ustilago maydis.

View Article and Find Full Text PDF

Long-distance transport is crucial for polar-growing cells, such as neurons and fungal hyphae. Kinesins and myosins participate in this process, but their functional interplay is poorly understood. Here, we investigate the role of kinesin motors in hyphal growth of the plant pathogen Ustilago maydis.

View Article and Find Full Text PDF