Publications by authors named "Daniela A Geisler"

The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2.

View Article and Find Full Text PDF

The mitochondrial ATP synthase (F(1)F(o) complex) is an evolutionary conserved multimeric protein complex that synthesizes the main bulk of cytosolic ATP, but the regulatory mechanisms of the subunits are only poorly understood in plants. In yeast, the δ-subunit links the membrane-embedded F(o) part to the matrix-facing central stalk of F(1). We used genetic interference and an inhibitor to investigate the molecular function and physiological impact of the δ-subunit in Arabidopsis thaliana.

View Article and Find Full Text PDF

Plant cell wall polysaccharides are synthesised at the plasma membrane and in the Golgi apparatus. Current research efforts mainly try to address how these molecules are synthesised or modified. However, it is clear that polysaccharide synthesis in the two compartments needs to be carried out in a coordinated fashion, and that carbohydrates and proteins that are delivered from the Golgi to the cell surface have to undergo a range of modifications.

View Article and Find Full Text PDF

The electron transport chain in mitochondria of different organisms contains a mixture of common and specialised components. The specialised enzymes form branches to the universal electron path, especially at the level of ubiquinone, and allow the chain to adjust to different cellular and metabolic requirements. In plants, specialised components have been known for a long time.

View Article and Find Full Text PDF

Type II NAD(P)H:quinone oxidoreductases are single polypeptide proteins widespread in the living world. They bypass the first site of respiratory energy conservation, constituted by the type I NADH dehydrogenases. To investigate substrate specificities and Ca(2+) binding properties of seven predicted type II NAD(P)H dehydrogenases of Arabidopsis thaliana we have produced them as T7-tagged fusion proteins in Escherichia coli.

View Article and Find Full Text PDF

The mitochondrial oxidative phosphorylation system in plants possesses a variety of alternative pathways that decrease respiratory ATP production. These alternative pathways are mediated by three classes of bypass proteins: the type II NAD(P)H dehydrogenases (which circumvent complex I of the electron transport chain), the alternative oxidases (AOXs; which circumvent complexes III and IV) and the uncoupling proteins (which circumvent ATP synthase). We have monitored the expression of all genes encoding respiratory bypass proteins in Arabidopsis thaliana growing with different sources of inorganic nitrogen (N).

View Article and Find Full Text PDF

The ion channel-forming peptide AlaM (alamethicin) is known to permeabilize isolated mitochondria as well as animal cells. When intact tobacco (Nicotiana tabacum L.) Bright Yellow-2 cells were treated with AlaM, the cells became permeable for low-molecular-mass molecules as shown by induced leakage of NAD(P)+.

View Article and Find Full Text PDF

Background: The plant respiratory chain contains several energy-dissipating enzymes, these being type II NAD(P)H dehydrogenases and the alternative oxidase, not present in mammals. The physiological functions of type II NAD(P)H dehydrogenases are largely unclear and little is known about their responses to stress. In this investigation, potato plants (Solanum tuberosum L.

View Article and Find Full Text PDF