Objectives: Wastewater-based surveillance applied to SARS-CoV-2 viral load quantification for COVID-19 has become one of the most relevant complementary tools in epidemiologic prevention programs worldwide. However, this valuable decision-making tool still requires fine-tuning to produce comparable results between laboratories, especially when applied to the surveillance of megacities.
Methods: Six laboratories across Mexico and one from the United States executed an interlaboratory study to set up a singular standardized protocol considering method cost, installed infrastructure, materials available, and supply availability for SARS-CoV-2 quantification from five Mexico City sampling sites across this megacity.
Currently, discharge regulations for wastewater treatment plants (WWTPs) are based on conventional parameters, but more is needed to ensure safe water reuse. In particular, emerging pollutants, as antimicrobials and antibiotic resistance genes (ARGs), are not considered. This research focuses on the fate of emerging biological contaminants during wastewater treatment in Mexico City.
View Article and Find Full Text PDFChemosphere
February 2023
Primary sludge (PS) is associated with public health and environmental risks, so regulations focus on reducing the pathogenic and heavy metal contents of the treated material (biosolids), intended for soil amendments and land reclamation. The regulations set limits for Escherichia coli (or fecal coliforms), Salmonella spp., helminth eggs and enterovirus.
View Article and Find Full Text PDFThe World Health Organization (WHO) ranks antimicrobial resistance (AMR) and various pathogens among the top 10 health threats. It is estimated that by 2050, the number of human deaths due to AMR will reach 10 million annually. On the other hand, several infectious outbreaks such as SARS, H1N1 influenza, Ebola, Zika fever, and COVID-19 have severely affected human populations worldwide in the last 20 years.
View Article and Find Full Text PDFThis work evaluated the UASB-septic tank performance using different kinetic models that correlated process efficiency and methane production with hydraulic and organic loading rates through experiments with five different HRT (48 h, 36 h, 24 h, 18 h, and 12 h) using synthetic domestic wastewater. The modified Stover-Kincannon model provided the best fitting to calculate kinetics constants, with an R above 98% for linear regression, and predicted the effluent COD more accurately than the other models. Methane yield was 0.
View Article and Find Full Text PDFThe rates of oxygenic and carbon fixation photosynthetic processes of a microalgae consortium were simultaneously evaluated under steady-state performance in an bench scale alkaline open-system exposed to outdoor conditions in Mexico City. A synthetic methane-free gaseous stream (SMGS) similar to biogas was used as inorganic carbon source and model of biogas upgrading. The microalgae CO fixation rates were calculated through a novel methodology based on an inorganic carbon mass balance under continuous scrubbing of a SMGS similar to biogas, where the influence of pH and temperature time-depended oscillations were successfully incorporated into the mass balances.
View Article and Find Full Text PDFA microbial community able to aerobically degrade the azo dye Acid Orange 7 was selected from riparian or lacustrine sediments collected at sites receiving textile wastewaters. Three bacterial strains, pertaining to the genera Pseudomonas, Arthrobacter, and Rhizobium, constitute the selected community. The biodegradation of AO7 was carried out in batch-suspended cell culture and in a continuously operated multistage packed-bed BAC reactor.
View Article and Find Full Text PDF