Publications by authors named "Daniel Zwick"

BACH2 (BTB Domain and CNC Homolog 2) is a transcription factor that serves as a central regulator of immune cell differentiation and function, particularly in T and B lymphocytes. A picture is emerging that BACH2 may function as a master regulator of cell fate that is exquisitely sensitive to cell activation status. In particular, BACH2 plays a key role in stabilizing the phenotype and suppressive function of transforming growth factor-beta (TGF-β)-derived human forkhead box protein P3 (FOXP3) inducible regulatory T cells (iTregs), a cell type that holds great clinical potential as a cell therapeutic for diverse inflammatory conditions.

View Article and Find Full Text PDF

Diminishing homeostatic proliferation of memory T cells is essential for improving the efficacy of lymphoablation in transplant recipients. Our previous studies in a mouse heart transplantation model established that B lymphocytes secreting proinflammatory cytokines are critical for T cell recovery after lymphoablation. The goal of the current study was to identify mediators of B cell activation following lymphoablation in allograft recipients.

View Article and Find Full Text PDF

The key obstacle to clinical application of human inducible regulatory T cells (iTreg) as an adoptive cell therapy in autoimmune disorders is loss of FOXP3 expression in an inflammatory milieu. Here we report human iTreg co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) during short-term ex vivo expansion enhances the stability of iTreg FOXP3 expression and suppressive function in vitro and in vivo, and further that a key mechanism of action is MSC mitochondrial (mt) transfer via tunneling nanotubules (TNT). MSC mt transfer is driven by mitochondrial metabolic function (CD39/CD73 signaling) in proliferating iTreg and promotes iTreg expression of FOXP3 stabilizing factors BACH2 and SENP3.

View Article and Find Full Text PDF

Understanding the mechanisms of T cell homeostatic expansion is crucial for clinical applications of lymphoablative therapies. We previously established that T cell recovery in mouse heart allograft recipients treated with anti-thymocyte globulin (mATG) critically depends on B cells and is mediated by B cell-derived soluble factors. B cell production of interleukin (IL)-1β and IL-6 is markedly upregulated after heart allotransplantation and lymphoablation.

View Article and Find Full Text PDF

Subunit vaccines can have excellent safety profiles, but their ability to give rise to robust immune responses is often compromised. For glycan-based vaccines, insufficient understanding of B and T cell epitope combinations that yield optimal immune activation hinders optimization. To determine which antigen features promote desired IgG responses, we synthesized epitope-functionalized polymers using ring-opening metathesis polymerization (ROMP) and assessed the effect of B and T cell epitope loading.

View Article and Find Full Text PDF

Dendritic cell (DC) lectins mediate the recognition, uptake, and processing of antigens, but they can also be coopted by pathogens for infection. These distinct activities depend upon the routing of antigens within the cell. Antigens directed to endosomal compartments are degraded, and the peptides are presented on major histocompatibility complex class II molecules, thereby promoting immunity.

View Article and Find Full Text PDF

Antibody-mediated lymphoablation is used in solid organ and stem cell transplantation and autoimmunity. Using murine anti-thymocyte globulin (mATG) in a mouse model of heart transplantation, we previously reported that the homeostatic recovery of CD8+ T cells requires help from depletion-resistant memory CD4+ T cells delivered through CD40-expressing B cells. This study investigated the mechanisms by which B cells mediate CD8+ T cell proliferation in lymphopenic hosts.

View Article and Find Full Text PDF

Degradable polymers promote sustainability, mitigate environmental impact, and facilitate biological applications. Tailoring degradable polymers is challenging because installing functional group-rich side chains is difficult when the backbone itself is susceptible to degradation. A convenient means of side chain installation is through postpolymerization modification (PPM).

View Article and Find Full Text PDF

Efficacious vaccines require antigens that elicit productive immune system activation. Antigens that afford robust antibody production activate both B and T cells. Elucidating the antigen properties that enhance B-T cell communication is difficult with traditional antigens.

View Article and Find Full Text PDF

B cells detect foreign antigens through their B cell antigen receptor (BCR). The BCR, when engaged by antigen, initiates a signaling cascade. Concurrent with signaling is endocytosis of the BCR complex, which acts to downregulate signaling and facilitate uptake of antigen for processing and display on the cell surface.

View Article and Find Full Text PDF

Reaping the promise of human embryonic stem (hES) cells hinges on effective defined culture conditions. Efforts to identify chemically defined environments for hES cell propagation would benefit from understanding the relevant functional properties of the substratum. Biological materials are often employed as substrata, but their complexity obscures a molecular level analysis of their relevant attributes.

View Article and Find Full Text PDF