Publications by authors named "Daniel Ziesel"

Neurostimulation employing photoactive organic semiconductors offers an appealing alternative to conventional techniques, enabling targeted action and wireless control through light. In this study, organic electrolytic photocapacitors (OEPC) are employed to investigate the effects of light-controlled electric stimulation on neuronal networks in vitro and in vivo. The interactions between the devices and biological systems are characterized.

View Article and Find Full Text PDF

Objective: This study aims to explore the potential of organic electrolytic photocapacitors (OEPCs), an innovative photovoltaic device, in mediating the activation of native voltage-gated Cav1.2 channels (I) in Guinea pig ventricular cardiomyocytes.

Methods: Whole-cell patch-clamp recordings were employed to examine light-triggered OEPC mediated I activation, integrating the channel's kinetic properties into a multicompartment cell model to take intracellular ion concentrations into account.

View Article and Find Full Text PDF

Background: Peripheral nerve injuries affect over 2% of trauma patients and can lead to severe functional impairment and permanent disability. Autologous nerve transplantation is still the gold standard in the reconstruction of nerve defects. For small defects, conduits can be considered for bridging.

View Article and Find Full Text PDF

This work introduces a low-cost open-source electrocardiography (ECG) simulator comprising both MATLAB software for signal generation and a dedicated circuit board for signal output via a commercial sound card. Synthetic, rate-dependent ECG simulation is based on third-order polynomials that are calculated in sections for the main waves and spikes, respectively. Besides the heart rate, the output profile is fully adjustable with respect to Einthoven lead signals I-III, the amplitudes of the individual ECG waves and spikes, as well as the constitution and intensity of common distortions.

View Article and Find Full Text PDF