Background: Studies on complexity indicators in the field of functional connectivity derived from resting-state fMRI (rs-fMRI) in Down syndrome (DS) samples and their possible relationship with cognitive functioning variables are rare. We analyze how some complexity indicators estimated in the subareas that constitute the default mode network (DMN) might be predictors of the neuropsychological outcomes evaluating Intelligence Quotient (IQ) and cognitive performance in persons with DS.
Methods: Twenty-two DS people were assessed with the Kaufman Brief Test of Intelligence (KBIT) and Frontal Assessment Battery (FAB) tests, and fMRI signals were recorded in a resting state over a six-minute period.
Behav Brain Res
May 2021
Emerging evidence suggests that an effective or functional connectivity network does not use a static process over time but incorporates dynamic connectivity that shows changes in neuronal activity patterns. Using structural equation models (SEMs), we estimated a dynamic component of the effective network through the effects (recursive and nonrecursive) between regions of interest (ROIs), taking into account the lag 1 effect. The aim of the paper was to find the best structural equation model (SEM) to represent dynamic effective connectivity in people with Down syndrome (DS) in comparison with healthy controls.
View Article and Find Full Text PDFBackground: Down syndrome (DS) is a chromosomal disorder that causes intellectual disability. Few studies have been conducted on functional connectivity using resting-state fMRI (functional magnetic resonance imaging) signals or more specifically, on the relevant structure and density of the default mode network (DMN). Although data on this issue have been reported in adult DS individuals (age: >45 years), the DMN properties in young DS individuals have not been studied.
View Article and Find Full Text PDF: This study aims to characterize the differences on the short-term temporal network dynamics of the undirected and weighted whole-brain functional connectivity between healthy aging individuals and people with mild cognitive impairment (MCI). The Network Change Point Detection algorithm was applied to identify the significant change points in the resting-state fMRI register, and we analyzed the fluctuations in the topological properties of the sub-networks between significant change points. : Ten MCI patients matched by gender and age in 1:1 ratio to healthy controls screened during patient recruitment.
View Article and Find Full Text PDFMild cognitive impairment is defined as greater cognitive decline than expected for a person at a particular age and is sometimes considered a stage between healthy aging and Alzheimer's disease or other dementia syndromes. It is known that functional connectivity patterns change in people with this diagnosis. We studied functional connectivity patterns and functional segregation in a resting-state fMRI paradigm comparing 10 MCI patients and 10 healthy controls matched by education level, age and sex.
View Article and Find Full Text PDFThe study of orthographic errors in a transparent language such as Spanish is an important topic in relation to writing acquisition because in Spanish it is common to write pseudohomophones as valid words. The main objective of the present study was to explore the possible differences in activation patterns in brain areas while processing pseudohomophone orthographic errors between participants with high (High Spelling Skills (HSS)) and low (Low Spelling Skills (LSS)) spelling orthographic abilities. We hypothesize that (a) the detection of orthographic errors will activate bilateral inferior frontal gyri, and that (b) this effect will be greater in the HSS group.
View Article and Find Full Text PDFOrthographic competence allows automatic word recognition and reading fluency. To elucidate how the orthographic competence in Spanish-speaking adults might affect the neurofunctional mechanisms of visual word recognition, 32 young adults equally divided in two groups (HSS: High Spelling Skills, and LSS: Low Spelling Skills) were evaluated using fMRI methods, while they performed an orthographic recognition task involving pseudohomophones. HSS achieved significantly more correct responses and lower reaction times than LSS.
View Article and Find Full Text PDFThe study of orthographic errors in a transparent language like Spanish is an important topic in relation to writing acquisition. The development of neuroimaging techniques, particularly functional magnetic resonance imaging (fMRI), has enabled the study of such relationships between brain areas. The main objective of the present study was to explore the patterns of effective connectivity by processing pseudohomophone orthographic errors among subjects with high and low spelling skills.
View Article and Find Full Text PDF