Publications by authors named "Daniel Zamler"

Article Synopsis
  • This study focuses on a clinical trial exploring the use of adenoviral vectors to enhance immune responses in patients with high-grade gliomas, which are aggressive brain tumors with poor treatment outcomes.
  • The trial involved administering two specific vectors (HSV1-TK and Flt3L) into the tumor site of treatment-naive adults, using a dose-finding approach to evaluate safety and potential effectiveness.
  • Conducted at the University of Michigan, the study aimed to assess how these vectors could stimulate anti-tumor immunity and improve patient prognosis after standard treatment protocols.
View Article and Find Full Text PDF

Glioblastoma is the most deadly and common primary tumor of the central nervous system. Heterogeneity in the disease causes complications from diagnosis to treatment. It has long been suggested that a stem cell and/or progenitor population may be the origin of this disease and provide the underlying heterogeneity.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a high-grade, aggressive brain tumor with dismal median survival time of 15 months. Chromosome 6q (Ch6q) is a hotspot of genomic alterations, which is commonly deleted or hyper-methylated in GBM. Two neighboring genes in this region, and have been appointed as tumor suppressors in GBM.

View Article and Find Full Text PDF

Stem cells are fundamental units of tissue remodeling whose functions are dictated by lineage-specific transcription factors. Home to epidermal stem cells and their upward-stratifying progenies, skin relies on its secretory functions to form the outermost protective barrier, of which a transcriptional orchestrator has been elusive. KLF5 is a Krüppel-like transcription factor broadly involved in development and regeneration whose lineage specificity, if any, remains unclear.

View Article and Find Full Text PDF

Intra-tumoral heterogeneity is a hallmark of glioblastoma that challenges treatment efficacy. However, the mechanisms that set up tumor heterogeneity and tumor cell migration remain poorly understood. Herein, we present a comprehensive spatiotemporal study that aligns distinctive intra-tumoral histopathological structures, oncostreams, with dynamic properties and a specific, actionable, spatial transcriptomic signature.

View Article and Find Full Text PDF

Novel therapeutic strategies targeting glioblastoma (GBM) often fail in the clinic, partly because preclinical models in which hypotheses are being tested do not recapitulate human disease. To address this challenge, we took advantage of our previously developed spontaneous Qk/Trp53/Pten (QPP) triple-knockout model of human GBM, comparing the immune microenvironment of QPP mice with that of patient-derived tumors to determine whether this model provides opportunity for gaining insights into tumor physiopathology and preclinical evaluation of therapeutic agents. Immune profiling analyses and single-cell sequencing of implanted and spontaneous tumors from QPP mice and from patients with glioma revealed intratumoral immune components that were predominantly myeloid cells (e.

View Article and Find Full Text PDF

Although pharmacological stimulation of TLRs has anti-tumor effects, it has not been determined whether endogenous stimulation of TLRs can lead to tumor rejection. Herein, we demonstrate the existence of an innate anti-glioma NK-mediated circuit initiated by glioma-released miR-1983 within exosomes, and which is under the regulation of galectin-1 (Gal-1). We demonstrate that miR-1983 is an endogenous TLR7 ligand that activates TLR7 in pDCs and cDCs through a 5'-UGUUU-3' motif at its 3' end.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), the most aggressive brain cancer, recurs because glioblastoma stem cells (GSCs) are resistant to all standard therapies. We showed that GSCs, but not normal astrocytes, are sensitive to lysis by healthy allogeneic natural killer (NK) cells in vitro. Mass cytometry and single-cell RNA sequencing of primary tumor samples revealed that GBM tumor-infiltrating NK cells acquired an altered phenotype associated with impaired lytic function relative to matched peripheral blood NK cells from patients with GBM or healthy donors.

View Article and Find Full Text PDF

Purpose: Patients with central nervous system (CNS) tumors are typically treated with radiotherapy, but this is not curative and results in the upregulation of phosphorylated STAT3 (p-STAT3), which drives invasion, angiogenesis, and immune suppression. Therefore, we investigated the combined effect of an inhibitor of STAT3 and whole-brain radiotherapy (WBRT) in a murine model of glioma.

Experimental Design: C57BL/6 mice underwent intracerebral implantation of GL261 glioma cells, WBRT, and treatment with WP1066, a blood-brain barrier-penetrant inhibitor of the STAT3 pathway, or the two in combination.

View Article and Find Full Text PDF

Purpose: Anti-programmed cell death protein 1 (PD-1) therapy has demonstrated inconsistent therapeutic results in patients with glioblastoma (GBM) including those with profound impairments in CD8 T-cell effector responses.

Experimental Design: We ablated the gene in BL6 mice and intercrossed them with Ntv-a mice to determine how CD8 T cells affect malignant progression in forming endogenous gliomas. Tumor-bearing mice were treated with PD-1 to determine the efficacy of this treatment in the absence of T cells.

View Article and Find Full Text PDF

Lipid-rich myelin forms electrically insulating, axon-wrapping multilayers that are essential for neural function, and mature myelin is traditionally considered metabolically inert. Surprisingly, we discovered that mature myelin lipids undergo rapid turnover, and quaking (Qki) is a major regulator of myelin lipid homeostasis. Oligodendrocyte-specific Qki depletion, without affecting oligodendrocyte survival, resulted in rapid demyelination, within 1 week, and gradually neurological deficits in adult mice.

View Article and Find Full Text PDF

Background: High-grade gliomas are aggressive and immunosuppressive brain tumors. Molecular mechanisms that regulate the inhibitory immune tumor microenvironment (TME) and glioma progression remain poorly understood. Fyn tyrosine kinase is a downstream target of the oncogenic receptor tyrosine kinase pathway and is overexpressed in human gliomas.

View Article and Find Full Text PDF

Craniopharyngioma is a rare tumor in adults. Although histologically benign, it can be locally aggressive and may require additional therapeutic modalities to surgical resection. Analyses including next generation sequencing, chromogenic and hybridization, immunohistochemistry, and gene amplification were used to profile craniopharyngiomas (n=6) for frequently altered therapeutic targets.

View Article and Find Full Text PDF

CNS immune defenses are marshaled and dominated by brain resident macrophages and microglia, which are the innate immune sentinels and frontline host immune barriers against various pathogenic insults. These myeloid lineage cells are the predominant immune population in gliomas and can constitute up to 30-50% of the total cellular composition. Parenchymal microglial cells and recruited monocyte-derived macrophages from the periphery exhibit disease-specific phenotypic characteristics with spatial and temporal distinctions and are heterogeneous subpopulations based on their molecular signatures.

View Article and Find Full Text PDF

Improved molecular understanding is needed for rational treatment of diffuse intrinsic pontine gliomas (DIPG). Here, using multi-focal paired tumor and germline exome DNA and RNA sequencing, we uncovered phosphatase and tensin homolog () loss as a clonal mutation in the case of a 6-year-old boy with a diffuse intrinsic pontine glioma, and incorporated copy number alteration analyses to provide a more detailed understanding of clonal evolution in diffuse intrinsic pontine gliomas. As well, using the PedcBioPortal, we found alterations in in 16 of 326 (4.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is an aggressive and highly vascular tumor with median survival below 2 years. Despite advances in surgery, radiotherapy, and chemotherapy, survival has improved modestly. To combat glioma vascular proliferation, anti-angiogenic agents targeting vascular endothelial growth factor (VEGF) were introduced.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly invasive brain tumor. Perivascular invasion, autovascularization and vascular co-option occur throughout the disease and lead to tumor invasion and progression. The molecular basis for perivascular invasion, i.

View Article and Find Full Text PDF

Pediatric high-grade glioma (HGG, WHO Grade III and IV) is a devastating brain tumor with a median survival of less than two years. PDGFRA is frequently mutated/ amplified in pediatric HGG, but the significance of this finding has not been fully characterized. We hypothesize that alterations of PDGFRA will promote distinct prognostic and treatment implications in pediatric HGG.

View Article and Find Full Text PDF

Glioma cells grow in two phenotypic forms, as adherent monolayers and as free floating "neurospheres/tumorspheres", using specific media supplements. Whether each phenotype is irreversible remains unknown. Herein we show that both states are reversible using patient derived glioblastoma cell cultures (i.

View Article and Find Full Text PDF

One likely cause of treatment failure in glioblastoma is the persistence of glioma stem-like cells (GSLCs) which are highly resistant to therapies currently employed. We found that CXCL12 has highest expression in glioma cells derived from neural progenitor cells (NPC). The development and molecular signature of NPC-derived glioblastomas were analyzed and the therapeutic effect of blocking CXCL12 was tested.

View Article and Find Full Text PDF

Malignant gliomas are resistant to natural killer (NK) cell immune surveillance. However, the mechanisms used by these cancers to suppress antitumor NK cell activity remain poorly understood. We have recently reported on a novel mechanism of innate immune evasion characterized by the overexpression of the carbohydrate-binding protein galectin-1 by both mouse and rat malignant glioma.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most commonly occurring primary brain cancer in adults, in whom its highly infiltrative cells prevent total surgical resection, often leading to tumor recurrence and patient death. Our group has discovered a gene therapy approach for GBM that utilizes high-capacity "gutless" adenoviral vectors encoding regulatable therapeutic transgenes. The herpes simplex type 1-thymidine kinase (TK) actively kills dividing tumor cells in the brain when in the presence of the prodrug, ganciclovir (GCV), whereas the FMS-like tyrosine kinase 3 ligand (Flt3L) is an immune-stimulatory molecule under tight regulation by a tetracycline-inducible "Tet-On" activation system that induces anti-GBM immunity.

View Article and Find Full Text PDF

Cellular microenvironments, particularly those found in tumors, elicit a tolerogenic DC phenotype which can attenuate immune responses. Central to this process is the STAT3-mediated signaling cascade. As a transcription factor and oncogene, STAT3 promotes the expression of genes which allow tumor cells to proliferate, migrate and evade apoptosis.

View Article and Find Full Text PDF