Mycotoxins are known environmental pollutants that may contaminate food and feed chains. Some mycotoxins are regulated in many countries to limit the trading of contaminated and harmful commodities. However, the so-called emerging mycotoxins are poorly understood and need to be investigated further.
View Article and Find Full Text PDFThe cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
May 2024
Oxidised derivatives of cholesterol have been shown to inhibit the growth of Mycobacterium tuberculosis (Mtb). The bacteriostatic activity of these compounds has been attributed to their inhibition of CYP125A1 and CYP142A1, two metabolically critical cytochromes P450 that initiate degradation of the sterol side chain. Here, we synthesise and characterise an extensive library of 28 cholesterol derivatives to develop a structure-activity relationship for this class of inhibitors.
View Article and Find Full Text PDFThe cytochrome P450 enzymes (CYPs) are heme-thiolate monooxygenases that catalyse the insertion of an oxygen atom into the C-H bonds of organic molecules. In most CYPs, the activation of dioxygen by the heme is aided by an acid-alcohol pair of residues located in the I-helix of the enzyme. Mutation of the threonine residue of this acid-alcohol pair of CYP199A4, from the bacterium Rhodospeudomonas palustris HaA2, to a glutamate residue induces peroxygenase activity.
View Article and Find Full Text PDFCholesterol catabolism is an important survival mechanism for the pathogenic . Various other mycobacteria degrade not only cholesterol but plant sterols such as sitosterol and campesterol. In this work we demonstrate that the cytochrome P450 (CYP) CYP125 enzyme family is capable of sitosterol and campesterol side-chain oxidation and activation in these bacteria.
View Article and Find Full Text PDFThe cytochrome P450 family of monooxygenase enzymes have essential biological roles involving the selective oxidation of carbon-hydrogen bonds. They can also catalyze other important metabolic reactions including desaturation to form alkenes. Currently the factors that control the partition between P450 hydroxylation and desaturation pathways are poorly defined.
View Article and Find Full Text PDFThe cytochrome P450 (CYP) family of heme monooxygenases catalyse the selective oxidation of C-H bonds under ambient conditions. The CYP199A4 enzyme from Rhodopseudomonas palustris catalyses aliphatic oxidation of 4-cyclohexylbenzoic acid but not the aromatic oxidation of 4-phenylbenzoic acid, due to the distinct mechanisms of aliphatic and aromatic oxidation. The aromatic substrates 4-benzyl-, 4-phenoxy- and 4-benzoyl-benzoic acid and methoxy-substituted phenylbenzoic acids were assessed to see if they could achieve an orientation more amenable to aromatic oxidation.
View Article and Find Full Text PDFThe steroid binding CYP142 cytochrome P450 enzymes of species are involved in the metabolism of cholesterol and its derivatives. The equivalent enzyme from was studied to compare the degree of functional conservation between members of this CYP family. We compared substrate binding of the CYP142A3 enzymes of and and CYP142A1 from using UV-vis spectroscopy.
View Article and Find Full Text PDF