Binding of hepatocyte growth factor (HGF) to the receptor tyrosine kinase MET is implicated in the malignant process of multiple cancers, making disruption of this interaction a promising therapeutic strategy. However, targeting MET with bivalent antibodies can mimic HGF agonism via receptor dimerization. To address this limitation, we have developed onartuzumab, an Escherichia coli-derived, humanized, and affinity-matured monovalent monoclonal antibody against MET, generated using the knob-into-hole technology that enables the antibody to engage the receptor in a one-to-one fashion.
View Article and Find Full Text PDFBy enabling the simultaneous engagement of two distinct targets, bispecific antibodies broaden the potential utility of antibody-based therapies. However, bispecific-antibody design and production remain challenging, owing to the need to incorporate two distinct heavy and light chain pairs while maintaining natural nonimmunogenic antibody architecture. Here we present a bispecific-antibody production strategy that relies on co-culture of two bacterial strains, each expressing a half-antibody.
View Article and Find Full Text PDFAttempts to express eukaryotic multi-spanning membrane proteins at high-levels have been generally unsuccessful. In order to investigate the cause of this limitation and gain insight into the rate limiting processes involved, we have analyzed the effect of translation levels on the expression of several human membrane proteins in Escherichia coli (E. coli).
View Article and Find Full Text PDFClinical use of recombinant fibroblast growth factor 21 (FGF21) for the treatment of type 2 diabetes and other disorders linked to obesity has been proposed; however, its clinical development has been challenging owing to its poor pharmacokinetics. Here, we describe an alternative antidiabetic strategy using agonistic anti-FGFR1 (FGF receptor 1) antibodies (R1MAbs) that mimic the metabolic effects of FGF21. A single injection of R1MAb into obese diabetic mice induced acute and sustained amelioration of hyperglycemia, along with marked improvement in hyperinsulinemia, hyperlipidemia, and hepatosteatosis.
View Article and Find Full Text PDFThe development of bispecific antibodies as therapeutic agents for human diseases has great clinical potential, but broad application has been hindered by the difficulty of identifying bispecific antibody formats that exhibit favorable pharmacokinetic properties and ease of large-scale manufacturing. Previously, the development of an antibody technology utilizing heavy chain knobs-into-holes mutations and a single common light chain enabled the small-scale generation of human full-length bispecific antibodies. Here we have extended the technology by developing a two-part bispecific antibody discovery strategy that facilitates proof-of-concept studies and clinical candidate antibody generation.
View Article and Find Full Text PDFThe integral membrane protein CD20 has been identified as an important therapeutic target in the treatment of non-Hodgkin's lymphoma (NHL). CD20 binding of many antibodies including the therapeutic antibody, rituximab, has been shown to be critically dependent upon the conformation of a loop structure between the third and fourth helical transmembrane regions. In this work, human and murine CD20 proteins expressed in Escherichia coli are shown to be localized with the cell membrane and are purified in nondenaturing detergent solutions.
View Article and Find Full Text PDFA large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries.
View Article and Find Full Text PDFMany research and clinical applications require large quantities of full-length antibodies with long circulating half-lives, and production of these complex multi-subunit proteins has in the past been restricted to eukaryotic hosts. In this report, we demonstrate that efficient secretion of heavy and light chains in a favorable ratio leads to the high-level expression and assembly of full-length IgGs in the Escherichia coli periplasm. The technology described offers a rapid, generally applicable and potentially inexpensive method for the production of full-length therapeutic antibodies, as verified by the expression of several humanized IgGs.
View Article and Find Full Text PDF