Osteoradionecrosis (ORN) is a well-known and usually late complication of radiation therapy in the treatment of head and neck cancer. Although the therapy can be life extending, it also produces tissue toxicity in ipsilateral and contralateral tissues in an acute and chronic fashion. In the most severe cases of ORN, such as the one presented in this report, bilateral disease results in the need for total mandibulectomy and creates a tremendous reconstructive challenge.
View Article and Find Full Text PDFRAF and MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase) inhibitors are effective in treating patients with BRAF-mutant melanoma. However, most responses are partial and short-lived, and many patients fail to respond at all. We found that suppression of TORC1 activity in response to RAF or MEK inhibitors, as measured by decreased phosphorylation of ribosomal protein S6 (P-S6), effectively predicted induction of cell death by the inhibitor in BRAF-mutant melanoma cell lines.
View Article and Find Full Text PDFCirculating tumour cells (CTCs) shed into blood from primary cancers include putative precursors that initiate distal metastases. Although these cells are extraordinarily rare, they may identify cellular pathways contributing to the blood-borne dissemination of cancer. Here, we adapted a microfluidic device for efficient capture of CTCs from an endogenous mouse pancreatic cancer model and subjected CTCs to single-molecule RNA sequencing, identifying Wnt2 as a candidate gene enriched in CTCs.
View Article and Find Full Text PDFHomeobox 9 (HOXB9), a nontransforming transcription factor overexpressed in breast cancer, alters tumor cell fate and promotes tumor progression and metastasis. Here we show that HOXB9 confers resistance to ionizing radiation by promoting DNA damage response. In nonirradiated cells, HOXB9 induces spontaneous DNA damage, phosphorylated histone 2AX and p53 binding protein 1 foci, and increases baseline ataxia telangiectasia mutated (ATM) phosphorylation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2010
Rare circulating tumor cells (CTCs) present in the bloodstream of patients with cancer provide a potentially accessible source for detection, characterization, and monitoring of nonhematological cancers. We previously demonstrated the effectiveness of a microfluidic device, the CTC-Chip, in capturing these epithelial cell adhesion molecule (EpCAM)-expressing cells using antibody-coated microposts. Here, we describe a high-throughput microfluidic mixing device, the herringbone-chip, or "HB-Chip," which provides an enhanced platform for CTC isolation.
View Article and Find Full Text PDFIn a genome-wide screen of 684 cancer cell lines, we identified homozygous intragenic microdeletions involving genes encoding components of the apical-basal cell polarity complexes. Among these, PARD3 is disrupted in cell lines and primary tumors from squamous carcinomas and glioblastomas. Reconstituting PARD3 expression in both cell types restores tight junctions and retards contact-dependent proliferation.
View Article and Find Full Text PDF